Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 2;68(Pt 6):o1603–o1604. doi: 10.1107/S1600536812019022

N-Hexyl-3-(4-hy­droxy-3,5-dimeth­oxy­phen­yl)propanamide

L C R Andrade a, J A Paixão a,*, M J M de Almeida a, E J Tavares da Silva b, F M Fernandes Roleira b
PMCID: PMC3379212  PMID: 22719410

Abstract

In the title compound, C17H27NO4, which is an hydro­sinapic acid derivative with increased lipophilicity conferred by an additional alkyl chain, the central and the hexyl linear chains contain slightly shorter bond lengths [C—N = 1.316 (2) Å; average linear chain C—C = 1.487 (6) Å] than reported average values [Csp 2—N = 1.334, C—C for CH2—CH2 = 1.524 and 1.513 Å for CH2—CH3]. The 4-hy­droxy-3,5-dimeth­oxy­phenyl plane [r.m.s. deviation 0.055 (12) Å] makes an angle of 59.89 (5)° with the central plane of the mol­ecule (composed of the N atom, the carbonyl group and the two methyl­ene C atoms linking the carbonyl group and the ring, [r.m.s. deviation 0.0026 (10) Å], which, in turn, makes an angle of 64.24 (13)° with the essentially planar hexyl chain [r.m.s. deviation 0.035 (18) Å]. The N—H group of the amide group is involved in a bifurcated hydrogen bond towards the hy­droxy and one of the meth­oxy O atoms of the 4-hy­droxy-3,5-dimeth­oxy­phenyl substituent of a neighbouring mol­ecule, forming a two-dimensional network in the (100) plane. In addition, the same hy­droxy group acts as a donor towards the carbonyl O atom of another neighbouring mol­ecule, forming chains running along the b axis.

Related literature  

For the dependence on their structural characteristics of the anti­cancer activity of phenolic acids and their derivatives, see: Gomes et al. (2003). For restrictions on protection of lipophilic systems due to the hydro­philic nature of mol­ecules in aqueous media, see: Gao & Hu (2010). For the synthesis, see: Roleira et al. (2010). For reference bond lengths, see: Allen et al. (1987).graphic file with name e-68-o1603-scheme1.jpg

Experimental  

Crystal data  

  • C17H27NO4

  • M r = 309.40

  • Monoclinic, Inline graphic

  • a = 19.1126 (5) Å

  • b = 8.4086 (2) Å

  • c = 11.0715 (3) Å

  • β = 91.5691 (15)°

  • V = 1778.64 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.34 × 0.26 × 0.19 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.856, T max = 0.865

  • 34604 measured reflections

  • 4259 independent reflections

  • 2478 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.172

  • S = 0.99

  • 4255 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019022/bt5889sup1.cif

e-68-o1603-sup1.cif (27.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019022/bt5889Isup2.hkl

e-68-o1603-Isup2.hkl (208.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019022/bt5889Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H10⋯O4i 0.86 2.16 2.9655 (19) 155
N—H10⋯O5i 0.86 2.55 3.244 (2) 138
O4—H4⋯O9ii 0.82 1.84 2.6216 (17) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by funds from FEDER via the COMPETE (Programa Operacional Factores de Competi­tivi­dade) programme and by the FCT (Fundação para a Ciência e a Tecnologia; project PEst-C/FIS/UI0036/2011).

supplementary crystallographic information

Comment

Hydroxycinnamic acids and derivatives are known to display relevant antioxidant properties as well as biological activity towards several tumor cells, with their growth-inhibitory potency being strongly dependent on their structural characteristics (Gomes et al., 2003). Despite all the interesting biological effects of hydroxycinnamic acids and despite being dietary components, their bioavailability presents some limitations: although working well in aqueous media, their hydrophilic nature is usually a restriction for lipophilic systems protection (Gao & Hu, 2010). In order to develop new and more effective phenolic agents suitable for chemopreventive and/or chemotherapeutic purposes, hydrosinapic acid derivatives with increased lipophilicity conferred by an additional alkyl chain, were developed. For this, N-hexyl-3-(4-hydroxy-3,5-dimethoxyphenyl)propanamide was synthesized by reaction of the corresponding acid with hexylamine, in the presence of the coupling agent (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) (Roleira et al., 2010). Single crystal X-ray measurements evidence normal bond length values for the phenyl ring and its substituents. However the Csp2–N bond length in the molecule's central chain [1.316 (2) Å] is shorter than the reported average value of 1.334 Å (Allen et al., 1987). Furthermore the average value of the five measured Csp3–Csp3 bond lengths of the hexyl chain [1.487 (6) Å] is also significantly shorter then the average reported values (1.524 for CH2–CH2 and 1.513 for CH2–CH3, Allen et al., 1987). The molecule is characterized by an intramolecular C11–H11A···O9 pseudo-hydrogen bond within the central chain plane (deviation 0.0026 Å). The dihedral angle between this plane and the phenyl one (deviation 0.0545 Å) is 59.89 (5)°, being 64.24 (13)° the corresponding value between the central plane and the one of the hexyl chain (deviation 0.0349 Å). Cohesion of the structure is obtained through an extended newtork of H-bonds. The H atom of the amide group is involved in a bifurcated H-bond towards the hydroxy and one of the methoxy O atoms of the 4-hydroxy-3,5-dimethoxyphenyl substituent of a neignhbour molecule, forming a two dimensional network in the (100) plane. In addition, the same hydroxy group acts as a donnor towards the carbonyl O atom of another neighbour molecule forming chains running along the b axis.

Experimental

The title amide was prepared from the 3-(4-hydroxy-3,5-dimethoxyphenyl)propanoic acid by dissolution of 5 mmol of the acid in 10 ml of DMF followed by the addition of triethylamine (0.7 ml, 5 mmol). The solution was cooled in an ice-water bath and 0.657 ml (5 mmol) of N-hexylamine were added followed by a solution of 2.21 g (5 mmol) of BOP in 10 ml of methylene chloride. The mixture was stirred at 273 K for 30 min and then at room temperature for 30 min. Methylene chloride was removed under reduced pressure and the solution was diluted with 150 ml of water and extracted with ethyl acetate (150 ml). The organic phase was washed successively with 1 N hydrochloride acid (3x100 ml), water (150 ml), 1M NaHCO3 (3x100 ml), and water (2x100 ml), dried over anhydrous magnesium sulfate, filtered and evaporated, affording a crude material which was purified by crystallization yielding the desired amide. Suitable crystals for X-ray analysis were grown from slow evaporation of ethyl acetate. Mp(ethyl acetate): 366–367 K; IR (ATR) υmax cm-1: 3319 (N—H stretch), 1643 (C═O), 1125 (C–O).

Refinement

All hydrogen atoms were placed at idealized positions and refined as riding on their parent atoms using SHELXL97 defaults; the hydroxyl H atom was initialy positioned at the maximum of the difference electronic density around the parent O atom and refined using the HFIX 147 instruction.

Only 4255 out of 4259 independent reflections were used in the refinement because 4 low angle reflections were omitted due to overshadowing from the beam-stop.

Figures

Fig. 1.

Fig. 1.

ORTEPII plot of the title compound. Displacement ellipsoids are drawn at the 50% level.

Fig. 2.

Fig. 2.

Diagram depicting the H-bond network.

Crystal data

C17H27NO4 Dx = 1.157 Mg m3
Mr = 309.40 Melting point: 366.5 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 19.1126 (5) Å Cell parameters from 7386 reflections
b = 8.4086 (2) Å θ = 3.0–23.3°
c = 11.0715 (3) Å µ = 0.08 mm1
β = 91.5691 (15)° T = 293 K
V = 1778.64 (8) Å3 Prism, colourless
Z = 4 0.34 × 0.26 × 0.19 mm
F(000) = 672

Data collection

Bruker APEX CCD diffractometer 4259 independent reflections
Radiation source: fine-focus sealed tube 2478 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
φ and ω scans θmax = 27.9°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −25→25
Tmin = 0.856, Tmax = 0.865 k = −11→9
34604 measured reflections l = −12→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.094P)2 + 0.1703P] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max < 0.001
4255 reflections Δρmax = 0.19 e Å3
204 parameters Δρmin = −0.15 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.014 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.75497 (7) −0.11966 (19) 0.21012 (13) 0.0636 (4)
H10 0.7363 −0.0564 0.2610 0.076*
O3 0.58084 (7) 0.45097 (14) 0.08943 (12) 0.0698 (4)
O4 0.67504 (7) 0.49686 (13) −0.08385 (10) 0.0651 (4)
H4 0.6877 0.5478 −0.0240 0.098*
O5 0.73329 (7) 0.25857 (15) −0.19467 (11) 0.0676 (4)
O9 0.73578 (7) −0.30205 (15) 0.06653 (12) 0.0689 (4)
C1 0.61840 (9) 0.03560 (18) 0.00631 (14) 0.0507 (4)
C2 0.58855 (9) 0.16335 (19) 0.06493 (15) 0.0523 (4)
H2 0.5555 0.1454 0.1236 0.063*
C3 0.60757 (9) 0.31751 (18) 0.03669 (15) 0.0511 (4)
C4 0.65672 (9) 0.34669 (18) −0.05009 (14) 0.0485 (4)
C5 0.68601 (9) 0.21800 (19) −0.10955 (14) 0.0510 (4)
C6 0.66706 (9) 0.06345 (19) −0.08136 (14) 0.0528 (4)
H6 0.6871 −0.0216 −0.1215 0.063*
C7 0.59855 (9) −0.13192 (19) 0.04171 (16) 0.0585 (5)
H7A 0.6098 −0.2039 −0.0234 0.070*
H7B 0.5484 −0.1368 0.0525 0.070*
C8 0.63594 (9) −0.18697 (19) 0.15739 (15) 0.0549 (4)
H8A 0.6284 −0.1097 0.2208 0.066*
H8B 0.6161 −0.2874 0.1826 0.066*
C9 0.71300 (9) −0.20718 (18) 0.14130 (15) 0.0501 (4)
C11 0.83047 (10) −0.1231 (3) 0.20557 (19) 0.0850 (7)
H11A 0.8472 −0.0163 0.1900 0.102*
H11B 0.8438 −0.1897 0.1385 0.102*
C12 0.86543 (12) −0.1833 (3) 0.3176 (2) 0.0894 (7)
H12A 0.8501 −0.2916 0.3316 0.107*
H12B 0.8508 −0.1192 0.3852 0.107*
C13 0.94383 (12) −0.1808 (4) 0.3140 (2) 0.0967 (8)
H13A 0.9580 −0.2479 0.2477 0.116*
H13B 0.9585 −0.0731 0.2959 0.116*
C14 0.98230 (14) −0.2337 (4) 0.4256 (3) 0.1093 (9)
H14A 0.9668 −0.1695 0.4927 0.131*
H14B 0.9694 −0.3430 0.4420 0.131*
C15 1.05973 (14) −0.2242 (4) 0.4222 (3) 0.1218 (11)
H15A 1.0751 −0.2876 0.3547 0.146*
H15B 1.0726 −0.1148 0.4064 0.146*
C16 1.09856 (17) −0.2777 (5) 0.5325 (3) 0.1430 (13)
H16A 1.0904 −0.3891 0.5448 0.215*
H16B 1.0828 −0.2191 0.6009 0.215*
H16C 1.1477 −0.2597 0.5232 0.215*
C33 0.52544 (11) 0.4316 (2) 0.1699 (2) 0.0792 (6)
H33A 0.5415 0.3707 0.2386 0.119*
H33B 0.4874 0.3767 0.1296 0.119*
H33C 0.5098 0.5340 0.1962 0.119*
C55 0.76020 (12) 0.1358 (3) −0.26704 (19) 0.0827 (6)
H55A 0.7222 0.0765 −0.3033 0.124*
H55B 0.7888 0.0663 −0.2178 0.124*
H55C 0.7879 0.1812 −0.3293 0.124*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.0518 (10) 0.0748 (10) 0.0642 (9) −0.0007 (7) 0.0016 (7) −0.0170 (8)
O3 0.0784 (9) 0.0481 (7) 0.0842 (9) 0.0003 (6) 0.0272 (7) −0.0118 (6)
O4 0.0938 (10) 0.0483 (7) 0.0537 (7) −0.0083 (6) 0.0098 (6) 0.0001 (5)
O5 0.0770 (9) 0.0656 (8) 0.0611 (7) −0.0018 (6) 0.0200 (6) −0.0086 (6)
O9 0.0729 (9) 0.0600 (8) 0.0742 (8) −0.0011 (6) 0.0102 (7) −0.0160 (6)
C1 0.0504 (10) 0.0457 (8) 0.0552 (9) −0.0015 (7) −0.0134 (7) −0.0021 (7)
C2 0.0495 (10) 0.0502 (9) 0.0573 (9) −0.0036 (7) 0.0020 (8) −0.0012 (8)
C3 0.0548 (10) 0.0442 (9) 0.0542 (9) 0.0016 (7) 0.0003 (7) −0.0063 (7)
C4 0.0572 (10) 0.0426 (8) 0.0456 (8) −0.0020 (7) −0.0018 (7) −0.0009 (7)
C5 0.0501 (10) 0.0564 (9) 0.0465 (8) 0.0004 (7) −0.0017 (7) −0.0027 (7)
C6 0.0567 (11) 0.0459 (9) 0.0555 (9) 0.0053 (7) −0.0059 (8) −0.0087 (7)
C7 0.0545 (11) 0.0464 (9) 0.0740 (11) −0.0066 (7) −0.0105 (8) −0.0046 (8)
C8 0.0560 (11) 0.0468 (9) 0.0619 (10) −0.0064 (7) 0.0044 (8) 0.0031 (8)
C9 0.0576 (11) 0.0419 (8) 0.0508 (9) 0.0010 (7) 0.0026 (7) 0.0053 (7)
C11 0.0564 (13) 0.1206 (19) 0.0779 (13) −0.0055 (12) 0.0030 (10) −0.0124 (13)
C12 0.0622 (14) 0.1089 (18) 0.0967 (16) −0.0005 (12) −0.0056 (12) 0.0081 (14)
C13 0.0641 (15) 0.133 (2) 0.0928 (16) 0.0082 (13) −0.0021 (12) −0.0075 (15)
C14 0.0774 (18) 0.138 (2) 0.112 (2) 0.0045 (16) −0.0112 (15) 0.0073 (18)
C15 0.0728 (18) 0.184 (3) 0.108 (2) 0.0236 (18) −0.0101 (15) −0.012 (2)
C16 0.104 (2) 0.209 (4) 0.115 (2) 0.016 (2) −0.0206 (19) 0.005 (2)
C33 0.0720 (14) 0.0728 (13) 0.0943 (14) −0.0026 (10) 0.0296 (11) −0.0245 (12)
C55 0.0834 (16) 0.0945 (16) 0.0711 (12) 0.0065 (12) 0.0193 (11) −0.0207 (12)

Geometric parameters (Å, º)

N—C9 1.316 (2) C11—C12 1.482 (3)
N—C11 1.446 (2) C11—H11A 0.9700
N—H10 0.8600 C11—H11B 0.9700
O3—C3 1.3703 (19) C12—C13 1.500 (3)
O3—C33 1.412 (2) C12—H12A 0.9700
O4—C4 1.3653 (19) C12—H12B 0.9700
O4—H4 0.8200 C13—C14 1.489 (3)
O5—C5 1.367 (2) C13—H13A 0.9700
O5—C55 1.412 (2) C13—H13B 0.9700
O9—C9 1.2373 (19) C14—C15 1.484 (3)
C1—C6 1.383 (2) C14—H14A 0.9700
C1—C2 1.386 (2) C14—H14B 0.9700
C1—C7 1.513 (2) C15—C16 1.481 (4)
C2—C3 1.384 (2) C15—H15A 0.9700
C2—H2 0.9300 C15—H15B 0.9700
C3—C4 1.384 (2) C16—H16A 0.9600
C4—C5 1.392 (2) C16—H16B 0.9600
C5—C6 1.387 (2) C16—H16C 0.9600
C6—H6 0.9300 C33—H33A 0.9600
C7—C8 1.522 (2) C33—H33B 0.9600
C7—H7A 0.9700 C33—H33C 0.9600
C7—H7B 0.9700 C55—H55A 0.9600
C8—C9 1.498 (2) C55—H55B 0.9600
C8—H8A 0.9700 C55—H55C 0.9600
C8—H8B 0.9700
C9—N—C11 124.19 (16) H11A—C11—H11B 107.7
C9—N—H10 117.9 C11—C12—C13 113.6 (2)
C11—N—H10 117.9 C11—C12—H12A 108.8
C3—O3—C33 117.97 (14) C13—C12—H12A 108.8
C4—O4—H4 109.5 C11—C12—H12B 108.8
C5—O5—C55 117.83 (15) C13—C12—H12B 108.8
C6—C1—C2 119.40 (15) H12A—C12—H12B 107.7
C6—C1—C7 121.18 (15) C14—C13—C12 116.4 (2)
C2—C1—C7 119.40 (16) C14—C13—H13A 108.2
C3—C2—C1 120.40 (16) C12—C13—H13A 108.2
C3—C2—H2 119.8 C14—C13—H13B 108.2
C1—C2—H2 119.8 C12—C13—H13B 108.2
O3—C3—C4 114.75 (14) H13A—C13—H13B 107.3
O3—C3—C2 124.57 (16) C15—C14—C13 115.7 (2)
C4—C3—C2 120.68 (15) C15—C14—H14A 108.4
O4—C4—C3 122.55 (14) C13—C14—H14A 108.4
O4—C4—C5 118.68 (15) C15—C14—H14B 108.4
C3—C4—C5 118.68 (14) C13—C14—H14B 108.4
O5—C5—C6 124.80 (15) H14A—C14—H14B 107.4
O5—C5—C4 114.47 (14) C16—C15—C14 116.1 (3)
C6—C5—C4 120.73 (16) C16—C15—H15A 108.3
C1—C6—C5 120.10 (15) C14—C15—H15A 108.3
C1—C6—H6 119.9 C16—C15—H15B 108.3
C5—C6—H6 119.9 C14—C15—H15B 108.3
C1—C7—C8 112.70 (13) H15A—C15—H15B 107.4
C1—C7—H7A 109.1 C15—C16—H16A 109.5
C8—C7—H7A 109.1 C15—C16—H16B 109.5
C1—C7—H7B 109.1 H16A—C16—H16B 109.5
C8—C7—H7B 109.1 C15—C16—H16C 109.5
H7A—C7—H7B 107.8 H16A—C16—H16C 109.5
C9—C8—C7 112.03 (14) H16B—C16—H16C 109.5
C9—C8—H8A 109.2 O3—C33—H33A 109.5
C7—C8—H8A 109.2 O3—C33—H33B 109.5
C9—C8—H8B 109.2 H33A—C33—H33B 109.5
C7—C8—H8B 109.2 O3—C33—H33C 109.5
H8A—C8—H8B 107.9 H33A—C33—H33C 109.5
O9—C9—N 121.86 (16) H33B—C33—H33C 109.5
O9—C9—C8 121.18 (15) O5—C55—H55A 109.5
N—C9—C8 116.96 (15) O5—C55—H55B 109.5
N—C11—C12 113.90 (19) H55A—C55—H55B 109.5
N—C11—H11A 108.8 O5—C55—H55C 109.5
C12—C11—H11A 108.8 H55A—C55—H55C 109.5
N—C11—H11B 108.8 H55B—C55—H55C 109.5
C12—C11—H11B 108.8
C6—C1—C2—C3 −0.4 (2) C2—C1—C6—C5 0.4 (2)
C7—C1—C2—C3 177.97 (15) C7—C1—C6—C5 −177.97 (14)
C33—O3—C3—C4 173.79 (16) O5—C5—C6—C1 −179.81 (14)
C33—O3—C3—C2 −6.2 (3) C4—C5—C6—C1 0.2 (2)
C1—C2—C3—O3 179.82 (15) C6—C1—C7—C8 99.72 (18)
C1—C2—C3—C4 −0.2 (2) C2—C1—C7—C8 −78.67 (19)
O3—C3—C4—O4 −2.5 (2) C1—C7—C8—C9 −67.73 (19)
C2—C3—C4—O4 177.49 (14) C11—N—C9—O9 0.6 (3)
O3—C3—C4—C5 −179.18 (14) C11—N—C9—C8 −179.38 (17)
C2—C3—C4—C5 0.8 (2) C7—C8—C9—O9 −60.08 (19)
C55—O5—C5—C6 6.1 (2) C7—C8—C9—N 119.90 (16)
C55—O5—C5—C4 −173.98 (16) C9—N—C11—C12 −115.0 (2)
O4—C4—C5—O5 2.4 (2) N—C11—C12—C13 −177.8 (2)
C3—C4—C5—O5 179.19 (14) C11—C12—C13—C14 177.6 (2)
O4—C4—C5—C6 −177.66 (15) C12—C13—C14—C15 −177.6 (3)
C3—C4—C5—C6 −0.8 (2) C13—C14—C15—C16 −179.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N—H10···O4i 0.86 2.16 2.9655 (19) 155
N—H10···O5i 0.86 2.55 3.244 (2) 138
O4—H4···O9ii 0.82 1.84 2.6216 (17) 158

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5889).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2006). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gao, S. & Hu, M. (2010). Mini Rev. Med. Chem. 10, 550–567. [DOI] [PMC free article] [PubMed]
  4. Gomes, C. A., da Cruz, T. G., Andrade, J. L., Milhazes, N., Borges, F. & Marques, M. P. (2003). J. Med. Chem. 46, 5395–5401. [DOI] [PubMed]
  5. Roleira, F. M. F., Siquet, C., Elisabeta Orru, E., Garrido, E. M., Garrido, J., Milhazes, N., Podda, G., Paiva-Martins, F., Reis, S., Carvalho, R. A., Tavares-da-Silva, E. J. & Borges, F. (2010). Bioorg. Med. Chem. 18, 5816–5825. [DOI] [PubMed]
  6. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019022/bt5889sup1.cif

e-68-o1603-sup1.cif (27.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019022/bt5889Isup2.hkl

e-68-o1603-Isup2.hkl (208.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019022/bt5889Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES