Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1607. doi: 10.1107/S1600536812019174

4-[(E)-(4-Fluoro­benzyl­idene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione

H C Devarajegowda a,*, S Jeyaseelan a, R Sathishkumar b, Agnes Sylvia D’souza c, Alphonsus D’souza c
PMCID: PMC3379215  PMID: 22719413

Abstract

In the asymmetric unit of the title compound, C10H9FN4S, there are two independent mol­ecules in which the dihedral angles between the 1,2,4-triazole and benzene rings are 36.85 (10) and 7.81 (10)°. In the crystal, N—H⋯S inter­actions link pairs of independent mol­ecules into dimers. There are also π–π inter­actions between the triazole and benzene rings of inversion-related pairs of the more planar mol­ecule [centroid–centroid distance = 3.6430 (13) Å].

Related literature  

For background information on the properties and uses of chalcone derivatives, see: Temple (1981); Holla et al. (1998); Heidelberger et al. (1957); Andersson & MacGowan (2003). For a related structure, see: Devarajegowda et al. (2010).graphic file with name e-68-o1607-scheme1.jpg

Experimental  

Crystal data  

  • C10H9FN4S

  • M r = 236.27

  • Triclinic, Inline graphic

  • a = 9.0048 (19) Å

  • b = 10.811 (2) Å

  • c = 12.729 (3) Å

  • α = 101.205 (3)°

  • β = 103.899 (3)°

  • γ = 112.376 (3)°

  • V = 1054.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.52 × 0.24 × 0.13 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.77, T max = 1.00

  • 9923 measured reflections

  • 3698 independent reflections

  • 3383 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.085

  • S = 1.05

  • 3698 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019174/pk2403sup1.cif

e-68-o1607-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019174/pk2403Isup2.hkl

e-68-o1607-Isup2.hkl (177.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019174/pk2403Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3A⋯S1B 0.86 2.45 3.2840 (18) 164
N3B—H3B⋯S1A 0.86 2.51 3.3691 (18) 172

Acknowledgments

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for the data collection.

supplementary crystallographic information

Comment

4-Amino-5-mercapto-1,2,4-triazoles are the starting materials for the synthesis of a wide variety of heterocyclic derivatives which are of great importance in medicinal chemistry (Temple, 1981). Many Schiff & Mannich bases derived from 1,2,4-triazoles possess protozoacidal and bactericidal activities (Holla et al., 1998). Furthermore, fluorinated heterocycles have been shown to exhibit a wide variety of biocidal activities. Compounds such as fluorouracil and fluoroquinolone etc. have been used as anticancer agents and antibiotics respectively (Heidelberger et al., 1957; Andersson & MacGowan, 2003).

The asymmetric unit of crystals of 4-{[(1E)-(4-fluorophenyl)methylene] amino}-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione, C10H9F N4S, contain two crystallographically independent molecules (Fig. 1). The 1,2,4 triazole rings (N3A,N4A,N5A,C8A,C9A and (N3B,N4B,N5B,C8B,C9B) are not coplanar with their respective benzene ring (C11A—C16A) and (C11B—C16B) systems; the dihedral angle between the two planes being 36.85 (10)° and 7.81 (10)° in the two molecules. In the crystal, N3A—H3A···S1B and N3B—H3B···S1A interactions link pairs of inequivalent molecules into dimers (Table 1.). Finally, π-π interactions between inversion-related pairs of the more planar molecule occur between the triazole (N3B,N4B,N5B,C8B,C9B) and benzene (C11B—C16B) rings [centroid-centroid distance = 3.6430 (13) Å], which stabilize the crystal packing (Fig. 2).

Experimental

An equimolar mixture of the triazole (1; 0.02 mol) and 4-fluorobenzaldehyde (0.02 mol) in absolute ethanol (30 ml) was refluxed with concentrated H2SO4 (0.5 ml) for 1–2 hrs. On cooling the reaction mixture, the solid product was separated and re-crystallized using ethanol as solvent.

Refinement

All H atoms were placed at calculated positions and refined as riding, N—H = 0.86, Csp2—H = 0.93 Å and C(methyl)—H = 0.96 Å. Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The packing of the molecules showing the formation of hydrogen bonds that link inequivalent molecules into dimers via N3A—H3A···S1B and N3A—H3A···S1B.

Crystal data

C10H9FN4S Z = 4
Mr = 236.27 F(000) = 488
Triclinic, P1 Dx = 1.488 Mg m3
Hall symbol: -P 1 Melting point: 441 K
a = 9.0048 (19) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.811 (2) Å Cell parameters from 3698 reflections
c = 12.729 (3) Å θ = 1.7–25.0°
α = 101.205 (3)° µ = 0.30 mm1
β = 103.899 (3)° T = 293 K
γ = 112.376 (3)° Plate, colourless
V = 1054.4 (4) Å3 0.52 × 0.24 × 0.13 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3698 independent reflections
Radiation source: fine-focus sealed tube 3383 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
ω and φ scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −10→10
Tmin = 0.77, Tmax = 1.00 k = −12→12
9923 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.5511P] where P = (Fo2 + 2Fc2)/3
3698 reflections (Δ/σ)max = 0.001
291 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.23713 (5) 0.62340 (4) 0.35429 (3) 0.01697 (12)
F2A 1.06962 (13) 0.90655 (11) 0.94413 (8) 0.0227 (2)
N4A 0.40671 (18) 0.90351 (15) 0.20331 (12) 0.0173 (3)
N3A 0.29189 (18) 0.78138 (15) 0.21256 (12) 0.0156 (3)
H3A 0.1939 0.7264 0.1603 0.019*
N5A 0.50787 (17) 0.86716 (14) 0.36491 (11) 0.0143 (3)
N6A 0.62298 (17) 0.90901 (15) 0.47624 (11) 0.0158 (3)
C7A 0.6964 (2) 1.08701 (19) 0.33309 (15) 0.0229 (4)
H7A1 0.6894 1.1325 0.2756 0.034*
H7A2 0.7920 1.0658 0.3420 0.034*
H7A3 0.7112 1.1486 0.4042 0.034*
C8A 0.5365 (2) 0.95448 (18) 0.29812 (14) 0.0168 (4)
C9A 0.3462 (2) 0.75585 (17) 0.31005 (14) 0.0137 (3)
C10A 0.6362 (2) 0.80838 (17) 0.51028 (14) 0.0147 (3)
H10A 0.5724 0.7158 0.4617 0.018*
C11A 0.7512 (2) 0.83788 (17) 0.62529 (14) 0.0141 (3)
C12A 0.7622 (2) 0.72535 (18) 0.65853 (14) 0.0156 (4)
H12A 0.6968 0.6341 0.6078 0.019*
C13A 0.8693 (2) 0.74710 (18) 0.76628 (14) 0.0164 (4)
H13A 0.8764 0.6720 0.7886 0.020*
C14A 0.9647 (2) 0.88390 (18) 0.83872 (14) 0.0168 (4)
C15A 0.9588 (2) 0.99895 (18) 0.80954 (14) 0.0188 (4)
H15A 1.0257 1.0899 0.8607 0.023*
C16A 0.8504 (2) 0.97526 (18) 0.70181 (14) 0.0166 (4)
H16A 0.8437 1.0510 0.6804 0.020*
S1B −0.10121 (5) 0.62370 (4) 0.02884 (3) 0.01602 (12)
F2B −0.99250 (12) 0.36565 (11) −0.53412 (8) 0.0211 (2)
N3B −0.14587 (17) 0.43278 (14) 0.14306 (12) 0.0154 (3)
H3B −0.0436 0.4801 0.1919 0.018*
N4B −0.26081 (18) 0.30629 (15) 0.14576 (12) 0.0167 (3)
N5B −0.37235 (17) 0.36840 (14) 0.00279 (11) 0.0134 (3)
N6B −0.50533 (17) 0.34307 (15) −0.09421 (11) 0.0154 (3)
C7B −0.5645 (2) 0.14351 (18) 0.02702 (15) 0.0201 (4)
H7B1 −0.5561 0.0904 0.0786 0.030*
H7B2 −0.5940 0.0854 −0.0494 0.030*
H7B3 −0.6513 0.1734 0.0307 0.030*
C8B −0.3976 (2) 0.26907 (18) 0.05969 (14) 0.0154 (4)
C9B −0.2066 (2) 0.47588 (17) 0.05816 (13) 0.0137 (3)
C10B −0.4876 (2) 0.43797 (18) −0.14289 (14) 0.0157 (4)
H10B −0.3874 0.5224 −0.1132 0.019*
C11B −0.6245 (2) 0.41410 (18) −0.24528 (14) 0.0152 (4)
C12B −0.6015 (2) 0.52269 (18) −0.29298 (14) 0.0163 (4)
H12B −0.5009 0.6067 −0.2589 0.020*
C13B −0.7250 (2) 0.50845 (18) −0.39004 (14) 0.0165 (4)
H13B −0.7092 0.5812 −0.4216 0.020*
C14B −0.8721 (2) 0.38242 (18) −0.43791 (13) 0.0159 (4)
C15B −0.9013 (2) 0.27145 (18) −0.39334 (14) 0.0175 (4)
H15B −1.0024 0.1880 −0.4279 0.021*
C16B −0.7764 (2) 0.28784 (18) −0.29615 (14) 0.0162 (4)
H16B −0.7935 0.2150 −0.2647 0.019*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0138 (2) 0.0175 (2) 0.0161 (2) 0.00357 (18) 0.00235 (17) 0.00864 (17)
F2A 0.0208 (5) 0.0240 (6) 0.0141 (5) 0.0056 (5) −0.0019 (4) 0.0066 (4)
N4A 0.0152 (7) 0.0167 (7) 0.0181 (7) 0.0047 (6) 0.0043 (6) 0.0086 (6)
N3A 0.0116 (7) 0.0161 (7) 0.0145 (7) 0.0036 (6) 0.0005 (6) 0.0059 (6)
N5A 0.0136 (7) 0.0137 (7) 0.0130 (7) 0.0050 (6) 0.0014 (6) 0.0055 (6)
N6A 0.0132 (7) 0.0180 (7) 0.0117 (7) 0.0048 (6) 0.0003 (6) 0.0052 (6)
C7A 0.0201 (9) 0.0191 (9) 0.0216 (9) 0.0021 (8) 0.0022 (8) 0.0105 (8)
C8A 0.0169 (9) 0.0182 (9) 0.0166 (8) 0.0080 (7) 0.0051 (7) 0.0089 (7)
C9A 0.0131 (8) 0.0153 (8) 0.0126 (8) 0.0074 (7) 0.0030 (7) 0.0041 (6)
C10A 0.0126 (8) 0.0150 (8) 0.0151 (8) 0.0045 (7) 0.0050 (7) 0.0045 (7)
C11A 0.0110 (8) 0.0176 (8) 0.0131 (8) 0.0051 (7) 0.0047 (7) 0.0055 (7)
C12A 0.0134 (8) 0.0152 (8) 0.0152 (8) 0.0047 (7) 0.0037 (7) 0.0035 (7)
C13A 0.0175 (9) 0.0167 (9) 0.0170 (8) 0.0083 (7) 0.0058 (7) 0.0086 (7)
C14A 0.0137 (8) 0.0233 (9) 0.0107 (8) 0.0060 (7) 0.0024 (7) 0.0069 (7)
C15A 0.0193 (9) 0.0157 (9) 0.0149 (8) 0.0034 (7) 0.0043 (7) 0.0023 (7)
C16A 0.0196 (9) 0.0161 (9) 0.0170 (8) 0.0088 (7) 0.0073 (7) 0.0084 (7)
S1B 0.0125 (2) 0.0161 (2) 0.0166 (2) 0.00421 (17) 0.00188 (17) 0.00781 (17)
F2B 0.0166 (5) 0.0258 (6) 0.0163 (5) 0.0081 (4) −0.0012 (4) 0.0089 (4)
N3B 0.0105 (7) 0.0172 (7) 0.0151 (7) 0.0040 (6) 0.0015 (6) 0.0066 (6)
N4B 0.0151 (7) 0.0184 (7) 0.0168 (7) 0.0067 (6) 0.0050 (6) 0.0081 (6)
N5B 0.0114 (7) 0.0147 (7) 0.0118 (7) 0.0051 (6) 0.0013 (6) 0.0047 (6)
N6B 0.0135 (7) 0.0191 (7) 0.0119 (7) 0.0080 (6) 0.0009 (6) 0.0044 (6)
C7B 0.0181 (9) 0.0181 (9) 0.0191 (9) 0.0040 (7) 0.0028 (7) 0.0089 (7)
C8B 0.0184 (9) 0.0173 (9) 0.0136 (8) 0.0092 (7) 0.0070 (7) 0.0074 (7)
C9B 0.0132 (8) 0.0165 (8) 0.0127 (8) 0.0081 (7) 0.0043 (7) 0.0048 (7)
C10B 0.0131 (8) 0.0175 (9) 0.0150 (8) 0.0063 (7) 0.0032 (7) 0.0052 (7)
C11B 0.0142 (8) 0.0192 (9) 0.0135 (8) 0.0089 (7) 0.0047 (7) 0.0051 (7)
C12B 0.0129 (8) 0.0173 (9) 0.0154 (8) 0.0042 (7) 0.0044 (7) 0.0045 (7)
C13B 0.0186 (9) 0.0187 (9) 0.0161 (8) 0.0099 (7) 0.0069 (7) 0.0092 (7)
C14B 0.0126 (8) 0.0244 (9) 0.0106 (8) 0.0097 (7) 0.0018 (7) 0.0054 (7)
C15B 0.0135 (8) 0.0170 (9) 0.0176 (9) 0.0039 (7) 0.0037 (7) 0.0046 (7)
C16B 0.0164 (9) 0.0186 (9) 0.0158 (8) 0.0085 (7) 0.0060 (7) 0.0079 (7)

Geometric parameters (Å, º)

S1A—C9A 1.6854 (17) S1B—C9B 1.6855 (17)
F2A—C14A 1.3564 (19) F2B—C14B 1.3545 (18)
N4A—C8A 1.304 (2) N3B—C9B 1.338 (2)
N4A—N3A 1.3805 (19) N3B—N4B 1.3785 (19)
N3A—C9A 1.341 (2) N3B—H3B 0.8600
N3A—H3A 0.8600 N4B—C8B 1.297 (2)
N5A—C9A 1.381 (2) N5B—C8B 1.387 (2)
N5A—C8A 1.383 (2) N5B—C9B 1.390 (2)
N5A—N6A 1.4055 (18) N5B—N6B 1.3935 (18)
N6A—C10A 1.282 (2) N6B—C10B 1.277 (2)
C7A—C8A 1.482 (2) C7B—C8B 1.484 (2)
C7A—H7A1 0.9600 C7B—H7B1 0.9600
C7A—H7A2 0.9600 C7B—H7B2 0.9600
C7A—H7A3 0.9600 C7B—H7B3 0.9600
C10A—C11A 1.468 (2) C10B—C11B 1.463 (2)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C12A 1.393 (2) C11B—C12B 1.394 (2)
C11A—C16A 1.401 (2) C11B—C16B 1.401 (2)
C12A—C13A 1.390 (2) C12B—C13B 1.387 (2)
C12A—H12A 0.9300 C12B—H12B 0.9300
C13A—C14A 1.378 (2) C13B—C14B 1.377 (2)
C13A—H13A 0.9300 C13B—H13B 0.9300
C14A—C15A 1.381 (2) C14B—C15B 1.388 (2)
C15A—C16A 1.389 (2) C15B—C16B 1.386 (2)
C15A—H15A 0.9300 C15B—H15B 0.9300
C16A—H16A 0.9300 C16B—H16B 0.9300
C8A—N4A—N3A 103.69 (13) C9B—N3B—N4B 114.48 (13)
C9A—N3A—N4A 114.26 (13) C9B—N3B—H3B 122.8
C9A—N3A—H3A 122.9 N4B—N3B—H3B 122.8
N4A—N3A—H3A 122.9 C8B—N4B—N3B 104.14 (13)
C9A—N5A—C8A 108.36 (13) C8B—N5B—C9B 108.24 (13)
C9A—N5A—N6A 130.31 (14) C8B—N5B—N6B 118.40 (13)
C8A—N5A—N6A 120.57 (13) C9B—N5B—N6B 133.34 (14)
C10A—N6A—N5A 115.20 (14) C10B—N6B—N5B 118.87 (14)
C8A—C7A—H7A1 109.5 C8B—C7B—H7B1 109.5
C8A—C7A—H7A2 109.5 C8B—C7B—H7B2 109.5
H7A1—C7A—H7A2 109.5 H7B1—C7B—H7B2 109.5
C8A—C7A—H7A3 109.5 C8B—C7B—H7B3 109.5
H7A1—C7A—H7A3 109.5 H7B1—C7B—H7B3 109.5
H7A2—C7A—H7A3 109.5 H7B2—C7B—H7B3 109.5
N4A—C8A—N5A 110.95 (15) N4B—C8B—N5B 110.75 (15)
N4A—C8A—C7A 126.29 (15) N4B—C8B—C7B 126.55 (15)
N5A—C8A—C7A 122.75 (15) N5B—C8B—C7B 122.61 (14)
N3A—C9A—N5A 102.69 (14) N3B—C9B—N5B 102.39 (14)
N3A—C9A—S1A 127.58 (13) N3B—C9B—S1B 127.11 (13)
N5A—C9A—S1A 129.68 (12) N5B—C9B—S1B 130.49 (12)
N6A—C10A—C11A 120.60 (15) N6B—C10B—C11B 120.14 (15)
N6A—C10A—H10A 119.7 N6B—C10B—H10B 119.9
C11A—C10A—H10A 119.7 C11B—C10B—H10B 119.9
C12A—C11A—C16A 119.27 (15) C12B—C11B—C16B 119.26 (15)
C12A—C11A—C10A 118.67 (15) C12B—C11B—C10B 117.97 (15)
C16A—C11A—C10A 122.06 (15) C16B—C11B—C10B 122.77 (15)
C13A—C12A—C11A 121.16 (15) C13B—C12B—C11B 121.55 (16)
C13A—C12A—H12A 119.4 C13B—C12B—H12B 119.2
C11A—C12A—H12A 119.4 C11B—C12B—H12B 119.2
C14A—C13A—C12A 117.62 (15) C14B—C13B—C12B 117.43 (16)
C14A—C13A—H13A 121.2 C14B—C13B—H13B 121.3
C12A—C13A—H13A 121.2 C12B—C13B—H13B 121.3
F2A—C14A—C13A 118.21 (15) F2B—C14B—C13B 118.19 (15)
F2A—C14A—C15A 118.41 (15) F2B—C14B—C15B 118.62 (15)
C13A—C14A—C15A 123.38 (15) C13B—C14B—C15B 123.18 (15)
C14A—C15A—C16A 118.25 (16) C16B—C15B—C14B 118.52 (16)
C14A—C15A—H15A 120.9 C16B—C15B—H15B 120.7
C16A—C15A—H15A 120.9 C14B—C15B—H15B 120.7
C15A—C16A—C11A 120.32 (16) C15B—C16B—C11B 120.06 (16)
C15A—C16A—H16A 119.8 C15B—C16B—H16B 120.0
C11A—C16A—H16A 119.8 C11B—C16B—H16B 120.0
C8A—N4A—N3A—C9A 0.33 (18) C9B—N3B—N4B—C8B 0.09 (18)
C9A—N5A—N6A—C10A 42.7 (2) C8B—N5B—N6B—C10B 175.50 (14)
C8A—N5A—N6A—C10A −148.60 (15) C9B—N5B—N6B—C10B −6.8 (3)
N3A—N4A—C8A—N5A 1.13 (18) N3B—N4B—C8B—N5B −0.02 (18)
N3A—N4A—C8A—C7A −179.27 (17) N3B—N4B—C8B—C7B −176.50 (16)
C9A—N5A—C8A—N4A −2.17 (19) C9B—N5B—C8B—N4B −0.05 (19)
N6A—N5A—C8A—N4A −173.13 (14) N6B—N5B—C8B—N4B 178.23 (13)
C9A—N5A—C8A—C7A 178.21 (16) C9B—N5B—C8B—C7B 176.60 (15)
N6A—N5A—C8A—C7A 7.2 (2) N6B—N5B—C8B—C7B −5.1 (2)
N4A—N3A—C9A—N5A −1.58 (18) N4B—N3B—C9B—N5B −0.11 (17)
N4A—N3A—C9A—S1A 176.05 (12) N4B—N3B—C9B—S1B −179.39 (12)
C8A—N5A—C9A—N3A 2.17 (17) C8B—N5B—C9B—N3B 0.09 (17)
N6A—N5A—C9A—N3A 171.95 (15) N6B—N5B—C9B—N3B −177.83 (15)
C8A—N5A—C9A—S1A −175.39 (13) C8B—N5B—C9B—S1B 179.34 (13)
N6A—N5A—C9A—S1A −5.6 (3) N6B—N5B—C9B—S1B 1.4 (3)
N5A—N6A—C10A—C11A −179.52 (13) N5B—N6B—C10B—C11B 179.62 (14)
N6A—C10A—C11A—C12A −179.68 (15) N6B—C10B—C11B—C12B 177.84 (15)
N6A—C10A—C11A—C16A −0.1 (2) N6B—C10B—C11B—C16B −1.8 (3)
C16A—C11A—C12A—C13A 0.2 (2) C16B—C11B—C12B—C13B −0.4 (2)
C10A—C11A—C12A—C13A 179.80 (15) C10B—C11B—C12B—C13B 179.94 (15)
C11A—C12A—C13A—C14A −0.3 (2) C11B—C12B—C13B—C14B 0.0 (2)
C12A—C13A—C14A—F2A 179.92 (14) C12B—C13B—C14B—F2B −178.64 (14)
C12A—C13A—C14A—C15A 0.0 (3) C12B—C13B—C14B—C15B 0.3 (3)
F2A—C14A—C15A—C16A −179.57 (14) F2B—C14B—C15B—C16B 178.77 (14)
C13A—C14A—C15A—C16A 0.4 (3) C13B—C14B—C15B—C16B −0.2 (3)
C14A—C15A—C16A—C11A −0.4 (2) C14B—C15B—C16B—C11B −0.2 (2)
C12A—C11A—C16A—C15A 0.1 (2) C12B—C11B—C16B—C15B 0.5 (2)
C10A—C11A—C16A—C15A −179.41 (15) C10B—C11B—C16B—C15B −179.81 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3A—H3A···S1B 0.86 2.45 3.2840 (18) 164
N3B—H3B···S1A 0.86 2.51 3.3691 (18) 172

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2403).

References

  1. Andersson, M. I. & MacGowan, A. P. (2003). J. Antimicrob. Chemother. 51, 1–11. [DOI] [PubMed]
  2. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Devarajegowda, H. C., Jeyaseelan, S., Sumangala, V., Bojapoojary & Nayak, S. P. (2010). Acta Cryst. E66, o2512–o2513. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Greisbach, L., Duschinsky, R., Scnnitzer, R. J., Pleaven, E. & Scheiner, J. (1957). Nature (London), 179, 663–666. [DOI] [PubMed]
  6. Holla, B. S., Shivananda, M. K., Shenoy, S. & Antony, G. (1998). Boll. Chim. Farm. 136, 680–685. [PubMed]
  7. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Temple, C. (1981). The Chemistry of Heterocyclic Compounds, Vol. 37, edited by J. A. Montgomery, pp. 62–95. New York: Wiley Interscience.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019174/pk2403sup1.cif

e-68-o1607-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019174/pk2403Isup2.hkl

e-68-o1607-Isup2.hkl (177.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019174/pk2403Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES