Abstract
In the molecule of the title compound, C9H9N3O, the angle formed by the least-squares line through the azide group with the normal to the plane of the benzene plane ring is 46.62 (16)°. The crystal structure features C—H⋯O hydrogen bonds, which link the molecules into zigzag chains running parallel to [010].
Related literature
For a related structure, see: Yousuf et al. (2012 ▶). For the biological activity of triazoles, see: Genin et al. (2000 ▶); Parmee et al. (2000 ▶); Koble et al. (1995 ▶); Moltzen et al. (1994 ▶).
Experimental
Crystal data
C9H9N3O
M r = 175.19
Monoclinic,
a = 7.696 (3) Å
b = 9.025 (3) Å
c = 14.248 (4) Å
β = 118.726 (15)°
V = 867.8 (5) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 273 K
0.30 × 0.21 × 0.17 mm
Data collection
Bruker SMART APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000 ▶) T min = 0.973, T max = 0.985
4915 measured reflections
1595 independent reflections
1464 reflections with I > 2σ(I)
R int = 0.019
Refinement
R[F 2 > 2σ(F 2)] = 0.034
wR(F 2) = 0.090
S = 1.07
1595 reflections
120 parameters
H-atom parameters constrained
Δρmax = 0.24 e Å−3
Δρmin = −0.28 e Å−3
Data collection: SMART (Bruker, 2000 ▶); cell refinement: SAINT (Bruker, 2000 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 ▶) and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018491/rz2744sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018491/rz2744Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812018491/rz2744Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C8—H8A⋯O1i | 0.97 | 2.40 | 3.2404 (19) | 145 |
Symmetry code: (i)
.
supplementary crystallographic information
Comment
Triazoles are considered an important class of compounds due to their therapeutic potential (Genin et al., 2000; Parmee et al., 2000; Koble et al., 1995; Moltzen et al., 1994). The title compound was obtained as an intermediate during our attempt to synthesize biologically active triazoles.
The structure of the title compound (Fig. 1) is similar to that of our recently published compound 2-azido-1-(4-fluorophenyl)ethanone (Yousuf et al., 2012) with the difference that the fluorophenyl ring is replaced by a toluene ring. The bond lengths and angles are similar to those found in the previously reported compound. The azide group is not linear (N3–N2–N1 = 170.84 (11)°) and the least-square line through it forms with the normal to the plane of benzene ring an angle of 46.62 (16)°. The crystal structure is stabilized by C—H···O intermolecular hydrogen bonds (Table 1) forming zig-zag chains parallel to the b axis (Fig. 2).
Experimental
1-p-Tolylethanone (8.32 mmol, 1.0 equiv.) was dissolved in acetonitrile (20 ml) in a round bottom flask. To the stirred mixture, p-toluene sulphonic acid (12.5 mmol, 1.5 equiv.) and N-bromosuccinimide (11.6 mmol, 1.4 equiv.) were added, and the mixtyre refluxed for 1 to 1.5 h until TLC analysis showed no starting material present. The reaction mixture was cooled to room temperature, sodium azide (24.9 mmol, 3.0 equiv.) was added and the mixture further stirred for 2 to 3 hrs followed by the addition of ice cooled water to quench the reaction. The reaction mixture was extracted with ethylacetate (25 ml × 2) and the combined organic layer were dried over anhydrous Na2SO4, filtered and concentrated in vacuum to get the crude product. The crude product was purified by flash silica gel chromatography (EtOAc/hexane, 1/9–3/7 v/v) to afford the crystalline title compound in 70% yield. The crystals were found to be suitable for single-crystal X-ray studies. All chemicals were purchased from Sigma-Aldrich.
Refinement
H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.
Figures
Fig. 1.
The molecular structure of the title cmpound with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Crystal packing of the title compound viewed along the a axis. Hydrogen atoms not involved in hydrogen bonds (dashed lines) are omitted for clearity.
Crystal data
| C9H9N3O | F(000) = 368 |
| Mr = 175.19 | Dx = 1.341 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 3299 reflections |
| a = 7.696 (3) Å | θ = 2.8–25.5° |
| b = 9.025 (3) Å | µ = 0.09 mm−1 |
| c = 14.248 (4) Å | T = 273 K |
| β = 118.726 (15)° | Block, colourless |
| V = 867.8 (5) Å3 | 0.30 × 0.21 × 0.17 mm |
| Z = 4 |
Data collection
| Bruker SMART APEX CCD area-detector diffractometer | 1595 independent reflections |
| Radiation source: fine-focus sealed tube | 1464 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.019 |
| ω scan | θmax = 25.5°, θmin = 2.8° |
| Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −9→9 |
| Tmin = 0.973, Tmax = 0.985 | k = −10→10 |
| 4915 measured reflections | l = −16→15 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
| wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0506P)2 + 0.1892P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max < 0.001 |
| 1595 reflections | Δρmax = 0.24 e Å−3 |
| 120 parameters | Δρmin = −0.28 e Å−3 |
| 0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.032 (4) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.37626 (11) | 0.32286 (8) | 0.67821 (6) | 0.0259 (2) | |
| N1 | 0.30617 (13) | 0.53889 (11) | 0.79105 (8) | 0.0250 (3) | |
| N2 | 0.46826 (13) | 0.49335 (10) | 0.86119 (7) | 0.0220 (2) | |
| N3 | 0.60533 (15) | 0.45093 (11) | 0.93395 (8) | 0.0285 (3) | |
| C1 | 0.27074 (15) | 0.33313 (12) | 0.45933 (9) | 0.0225 (3) | |
| H1B | 0.3054 | 0.2413 | 0.4929 | 0.027* | |
| C2 | 0.22351 (15) | 0.34548 (12) | 0.35311 (9) | 0.0234 (3) | |
| H2A | 0.2257 | 0.2615 | 0.3159 | 0.028* | |
| C3 | 0.17253 (15) | 0.48218 (12) | 0.30073 (9) | 0.0217 (3) | |
| C4 | 0.17304 (15) | 0.60668 (12) | 0.35936 (9) | 0.0238 (3) | |
| H4B | 0.1425 | 0.6991 | 0.3264 | 0.029* | |
| C5 | 0.21797 (15) | 0.59490 (12) | 0.46497 (9) | 0.0226 (3) | |
| H5A | 0.2157 | 0.6789 | 0.5022 | 0.027* | |
| C6 | 0.26701 (14) | 0.45736 (11) | 0.51680 (9) | 0.0198 (3) | |
| C7 | 0.31704 (14) | 0.43963 (11) | 0.63045 (9) | 0.0201 (3) | |
| C8 | 0.29227 (16) | 0.57461 (12) | 0.68730 (9) | 0.0224 (3) | |
| H8A | 0.3935 | 0.6468 | 0.6981 | 0.027* | |
| H8B | 0.1643 | 0.6195 | 0.6418 | 0.027* | |
| C9 | 0.11424 (17) | 0.49495 (13) | 0.18444 (9) | 0.0275 (3) | |
| H9A | 0.1646 | 0.5861 | 0.1723 | 0.041* | |
| H9B | −0.0276 | 0.4939 | 0.1426 | 0.041* | |
| H9C | 0.1684 | 0.4130 | 0.1640 | 0.041* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0310 (4) | 0.0219 (4) | 0.0239 (4) | 0.0038 (3) | 0.0125 (4) | 0.0038 (3) |
| N1 | 0.0204 (5) | 0.0313 (5) | 0.0230 (5) | 0.0014 (4) | 0.0103 (4) | −0.0017 (4) |
| N2 | 0.0254 (5) | 0.0220 (5) | 0.0229 (5) | −0.0032 (4) | 0.0151 (5) | −0.0038 (4) |
| N3 | 0.0296 (5) | 0.0333 (6) | 0.0225 (5) | 0.0008 (4) | 0.0125 (5) | 0.0017 (4) |
| C1 | 0.0214 (5) | 0.0199 (5) | 0.0245 (6) | 0.0039 (4) | 0.0097 (4) | 0.0022 (4) |
| C2 | 0.0226 (5) | 0.0233 (6) | 0.0239 (6) | 0.0029 (4) | 0.0109 (4) | −0.0020 (4) |
| C3 | 0.0155 (5) | 0.0282 (6) | 0.0222 (6) | −0.0008 (4) | 0.0096 (4) | 0.0014 (4) |
| C4 | 0.0234 (5) | 0.0198 (5) | 0.0261 (6) | −0.0005 (4) | 0.0104 (5) | 0.0045 (4) |
| C5 | 0.0227 (5) | 0.0187 (5) | 0.0246 (6) | −0.0018 (4) | 0.0100 (5) | −0.0016 (4) |
| C6 | 0.0152 (5) | 0.0204 (5) | 0.0222 (6) | −0.0010 (4) | 0.0076 (4) | −0.0001 (4) |
| C7 | 0.0152 (5) | 0.0212 (5) | 0.0219 (6) | −0.0014 (4) | 0.0074 (4) | 0.0001 (4) |
| C8 | 0.0215 (5) | 0.0224 (5) | 0.0209 (6) | −0.0002 (4) | 0.0083 (4) | −0.0014 (4) |
| C9 | 0.0270 (6) | 0.0333 (6) | 0.0254 (6) | 0.0025 (5) | 0.0151 (5) | 0.0041 (5) |
Geometric parameters (Å, º)
| O1—C7 | 1.2180 (13) | C4—C5 | 1.3765 (17) |
| N1—N2 | 1.2350 (14) | C4—H4B | 0.9300 |
| N1—C8 | 1.4659 (15) | C5—C6 | 1.4003 (16) |
| N2—N3 | 1.1327 (14) | C5—H5A | 0.9300 |
| C1—C2 | 1.3806 (16) | C6—C7 | 1.4821 (16) |
| C1—C6 | 1.3968 (16) | C7—C8 | 1.5247 (15) |
| C1—H1B | 0.9300 | C8—H8A | 0.9700 |
| C2—C3 | 1.3970 (16) | C8—H8B | 0.9700 |
| C2—H2A | 0.9300 | C9—H9A | 0.9600 |
| C3—C4 | 1.3991 (16) | C9—H9B | 0.9600 |
| C3—C9 | 1.4984 (17) | C9—H9C | 0.9600 |
| N2—N1—C8 | 116.42 (9) | C1—C6—C7 | 119.08 (10) |
| N3—N2—N1 | 170.84 (11) | C5—C6—C7 | 122.31 (10) |
| C2—C1—C6 | 120.60 (10) | O1—C7—C6 | 122.33 (10) |
| C2—C1—H1B | 119.7 | O1—C7—C8 | 120.22 (10) |
| C6—C1—H1B | 119.7 | C6—C7—C8 | 117.45 (9) |
| C1—C2—C3 | 121.02 (10) | N1—C8—C7 | 113.13 (9) |
| C1—C2—H2A | 119.5 | N1—C8—H8A | 109.0 |
| C3—C2—H2A | 119.5 | C7—C8—H8A | 109.0 |
| C2—C3—C4 | 118.09 (10) | N1—C8—H8B | 109.0 |
| C2—C3—C9 | 121.11 (10) | C7—C8—H8B | 109.0 |
| C4—C3—C9 | 120.79 (10) | H8A—C8—H8B | 107.8 |
| C5—C4—C3 | 121.19 (10) | C3—C9—H9A | 109.5 |
| C5—C4—H4B | 119.4 | C3—C9—H9B | 109.5 |
| C3—C4—H4B | 119.4 | H9A—C9—H9B | 109.5 |
| C4—C5—C6 | 120.49 (10) | C3—C9—H9C | 109.5 |
| C4—C5—H5A | 119.8 | H9A—C9—H9C | 109.5 |
| C6—C5—H5A | 119.8 | H9B—C9—H9C | 109.5 |
| C1—C6—C5 | 118.60 (11) | ||
| C6—C1—C2—C3 | 0.53 (16) | C4—C5—C6—C7 | 179.79 (9) |
| C1—C2—C3—C4 | 0.77 (16) | C1—C6—C7—O1 | 5.82 (15) |
| C1—C2—C3—C9 | −177.81 (9) | C5—C6—C7—O1 | −173.48 (10) |
| C2—C3—C4—C5 | −1.46 (16) | C1—C6—C7—C8 | −174.32 (9) |
| C9—C3—C4—C5 | 177.13 (10) | C5—C6—C7—C8 | 6.38 (14) |
| C3—C4—C5—C6 | 0.84 (16) | N2—N1—C8—C7 | 65.13 (12) |
| C2—C1—C6—C5 | −1.16 (15) | O1—C7—C8—N1 | −11.81 (14) |
| C2—C1—C6—C7 | 179.51 (9) | C6—C7—C8—N1 | 168.33 (8) |
| C4—C5—C6—C1 | 0.48 (16) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C8—H8A···O1i | 0.97 | 2.40 | 3.2404 (19) | 145 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2744).
References
- Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenco, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953–970.
- Koble, C. S., Davis, R. G., McLean, E. W., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 4131–4134. [DOI] [PubMed]
- Moltzen, E. K., Pedersen, H., Boegesoe, K. P., Meier, E., Frederiksen, K., Sanchez, C. & Lemboel, H. L. (1994). J. Med. Chem. 37, 4085–4099. [DOI] [PubMed]
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Parmee, L., Ok, E. R., Candelore, H. O., Cascieri, M. R., Colwell, M. A., Deng, L. F., Feeney, L., Forrest, W. P. M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111–2114. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Yousuf, S., Arshad, M., Butt, H. M., Saeed, S. & Basha, F. Z. (2012). Acta Cryst. E68, o1268. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018491/rz2744sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018491/rz2744Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812018491/rz2744Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


