Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1626. doi: 10.1107/S1600536812019423

Redetermined structure of oxaline: absolute configuration using Cu Kα radiation

Peng Qu a, Zhi-Yong Wu a, Wei-Ming Zhu a,*
PMCID: PMC3379231  PMID: 22719429

Abstract

In the title compound, C24H25N5O4, the stereogenic C atom bonded to three N atoms and one C atom has an S configuration and its directly bonded neighbour has an R configuration. An intra­molecular N—H⋯O hydrogen bond supports the near coplanarity of the two C3N2-five-membered rings [dihedral angle = 5.64 (10)°]. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming a C(8) chain propagating in [001]. The chains are connected by C—H⋯O inter­actions, generating a three-dimensional network. The previous study [Nagel et al. (1974). Chem. Commun. pp. 1021–1022] did not establish the absolute structure and no atomic coordinates were published or deposited.

Related literature  

For the previous structure, see: Nagel et al. (1974). For background to oxaline and its properties, see: Steyn (1970); Koizumi et al. (2004). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o1626-scheme1.jpg

Experimental  

Crystal data  

  • C24H25N5O4

  • M r = 447.49

  • Orthorhombic, Inline graphic

  • a = 10.7897 (2) Å

  • b = 13.2457 (3) Å

  • c = 15.6436 (4) Å

  • V = 2235.74 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 100 K

  • 0.60 × 0.20 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.658, T max = 0.914

  • 11202 measured reflections

  • 3786 independent reflections

  • 3766 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.089

  • S = 1.08

  • 3786 reflections

  • 379 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983), 1403 Friedel pairs

  • Flack parameter: −0.05 (18)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019423/hb6738sup1.cif

e-68-o1626-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019423/hb6738Isup2.hkl

e-68-o1626-Isup2.hkl (181.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯O13 0.89 (2) 1.85 (2) 2.6562 (19) 151 (2)
N14—H14⋯N19i 0.83 (2) 1.97 (2) 2.798 (2) 175 (2)
C4—H4⋯O9ii 0.97 (2) 2.54 (2) 3.154 (2) 121.5 (16)
C20—H20⋯O13iii 1.00 (2) 2.54 (2) 3.353 (2) 137.9 (16)
C24—H24C⋯O13iv 0.98 (3) 2.47 (3) 3.382 (2) 154 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by grants from the NSFC (No. 21172204), the Special Fund for Marine Scientific Research in the Public Inter­est of China (No. 2010418022–3) and the PCSIRT (No. IRT0944).

supplementary crystallographic information

Comment

Oxaline is a member of a class of biologically active indole alkaloids, characterized by a unique indoline spiroaminal framework and substitution of a 1,1-dimethylallyl ("reverse-prenyl") group at the benzylic ring junction. Oxaline was originally isolated from the culture broth of Penicillium oxalicum HK14–01 containing several unique structural features, including the N-OMe group, the unusual coupling of tryptophan and histidine, a single carbon atom bearing three nitrogen functionalities and a reversed prenyl group (Steyn, 1970). Besides, oxaline was found to inhibit tubulin polymerization in Jarkat cells, resulting in cell cycle arrest at the M phase (Koizumi et al., 2004). The X-ray structure of oxaline on Mo—Kα data was determined without definite absolute configuration (Nagel, et al., 1974). We isolated oxaline as part of our ongoing studies on characterizing bioactive metabolites from marine-derived halotolerant fungi. And the crystal structure on Cu—Kα and the absolute configuration are reported here.

The title compound I contains a four fused rings structure as illustrated in Fig. 1. Two chiral atoms of C2 and C3 have the absolute configurations of S and R, respectively. Atom of N1 is S but it can invert in solution. Atom O1 in I (S-) has a short intra-contact of O1···N14 [2.7018 (19) Å]. While in R- one, the short contact are 2.882(C3), 2.581(C8), 2.390(C9), 2.662(C10) and 2.675 Å(N11), which indicates a unfavorable configuration. Both bonds of C8═C9 and C12═C15 are E but cis conformation. The five-membered ring of N1—C2—C3—C3A—C7A adopts envelope conformation with the puckering parameters (Cremer and Pople, 1975) of Q[0.3968 (17) Å] and φ[34.8 (2)°]. The six-membered ring of C2—C3—C8—C9—C10—N11 has the puckering parameters of Q = 0.4342 (17) Å, θ = 69.0 (2)° and φ = 76.8 (2)°, which implies a conformation among boat, twist-boat and half-chair.

In the crystal, there are a one-dimensional classical hydrogen bonding chain parallel to the c axis (Fig. 2, Table 2) and a non-classical one along the b axis. These two kinds of chains together weave a three-dimensional supramolecular structure (Fig. 3).

Experimental

The halotolerant fugal strain Penicillium chrysogenum HK14–01, was isolated from the sediments collected in the Yellow River Delta, Dongying, Shandong, China. The working strain was cultured under static conditions at 298 K for 35 days in two hundred 1L conical flasks containing the liquid medium (300 ml/flask) composed of glucose (10 g/L), peptone (5 g/L), yeast extract (3 g/L), malt extract (1.5 g/L), marinum salt (100 g/L). The fermented whole broth (60 L) was filtered through cheese cloth to separate into supernatant and mycelia. The mycelia was extracted three times with acetone. The acetone solution was concentrated under reduced pressure to afford an aqueous solution. The acetone solution was extracted three times with ethyl acetate to give an ethyl acetate solution which was concentrated under reduced pressure to give a crude extract (39 g). The crude extract, which was subjected to chromatography over silica gel column using a stepwise gradient elution of CH2Cl2/petroleum ether(50–100%,V/V) and CH2Cl2/MeOH (0–100%,V/V),to yield twelve fractions (Fr.1-Fr.12). Fr.9, was fractionated on a C-18 ODS column using a step gradient elution of MeOH/H2O (60–100%,V/V) and was separated into 6 subfractions (Fr.9.1-Fr.9.6). Fr.9.3 was applied on Sephadex LH-20 using CH2Cl2/MeOH (1:1) to yield the title compound (145.0 mg). Colourless blocks were obtained by slow evaporation of petroleum ether/acetone (1:1) solution at 298 K.

Refinement

H atoms on C23 and C25 were placed in calculated positions, with C—H distances of 0.95 (C23) and 0.98 Å (C25), and were included in the final cycles of refinement in a riding model, with Uiso(H) values equal to 1.2Ueq(C23) or 1.5Ueq(C25). All other H atoms were located in a difference Fourier map and included in structure-factor calculations with free refinement. The highest difference peak is 0.83Å from atom H25C.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids shown at the 50% probability level. Dashed lines indicates a intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

A one-dimensional classical hydrogen-bonding chain along the c axis. [Symmetry code: (i) 1/2 - x, -y, z - 1/2; (ii) 1/2 - x, -y, z + 1/2]

Fig. 3.

Fig. 3.

A view of a three-dimensional hydrogen-bonding networks assembled by the classical chains above and the nonclassical ones parallel to the b axis. [Symmetry code: (ii) 1/2 - x, -y, z + 1/2; (iii) -x, y + 1/2, 3/2 - z; (iv) -x, y - 1/2, 3/2 - z]

Crystal data

C24H25N5O4 F(000) = 944
Mr = 447.49 Dx = 1.329 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 9936 reflections
a = 10.7897 (2) Å θ = 2.8–69.0°
b = 13.2457 (3) Å µ = 0.76 mm1
c = 15.6436 (4) Å T = 100 K
V = 2235.74 (9) Å3 Block, colourless
Z = 4 0.60 × 0.20 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 3786 independent reflections
Radiation source: fine-focus sealed tube 3766 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
φ and ω scans θmax = 69.4°, θmin = 4.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −13→12
Tmin = 0.658, Tmax = 0.914 k = −15→15
11202 measured reflections l = −16→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.608P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3786 reflections Δρmax = 0.64 e Å3
379 parameters Δρmin = −0.26 e Å3
0 restraints Absolute structure: Flack (1983), 1403 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.05 (18)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.32699 (15) 0.27923 (12) 0.80027 (10) 0.0186 (3)
C3 0.26044 (15) 0.37581 (12) 0.76650 (10) 0.0195 (3)
C3A 0.33279 (15) 0.39156 (12) 0.68341 (11) 0.0194 (3)
C4 0.30763 (17) 0.44534 (13) 0.60975 (11) 0.0229 (4)
C5 0.39516 (18) 0.44605 (14) 0.54394 (11) 0.0253 (4)
C6 0.50732 (17) 0.39574 (14) 0.55266 (12) 0.0246 (4)
C7 0.53572 (16) 0.34468 (13) 0.62767 (11) 0.0220 (4)
C7A 0.44724 (15) 0.34255 (12) 0.69104 (10) 0.0182 (3)
C8 0.29907 (16) 0.46075 (12) 0.82645 (11) 0.0211 (4)
C9 0.34100 (16) 0.44460 (12) 0.90560 (11) 0.0210 (3)
C10 0.33551 (16) 0.34357 (13) 0.94788 (11) 0.0214 (3)
C12 0.28689 (15) 0.16359 (13) 0.91257 (11) 0.0190 (3)
C13 0.26417 (14) 0.11484 (12) 0.82818 (10) 0.0187 (3)
C15 0.27783 (15) 0.12521 (13) 0.99230 (11) 0.0200 (3)
C16 0.24075 (15) 0.02576 (13) 1.01914 (10) 0.0204 (3)
C18 0.18204 (17) −0.13354 (13) 1.01993 (11) 0.0233 (4)
C20 0.24315 (17) −0.01288 (13) 1.10109 (11) 0.0231 (3)
C21 0.11422 (16) 0.36829 (14) 0.75912 (12) 0.0245 (4)
C22 0.07620 (17) 0.30327 (15) 0.68323 (13) 0.0292 (4)
C23 −0.0179 (2) 0.23927 (19) 0.68053 (16) 0.0467 (6)
H23A −0.0694 0.2306 0.7293 0.056*
H23B −0.0341 0.2020 0.6299 0.056*
C24 0.06073 (19) 0.47547 (16) 0.74467 (14) 0.0319 (4)
C25 0.05692 (16) 0.32850 (15) 0.84208 (12) 0.0281 (4)
H25A −0.0330 0.3387 0.8407 0.042*
H25B 0.0921 0.3650 0.8908 0.042*
H25C 0.0750 0.2563 0.8478 0.042*
C26 0.38241 (19) 0.61629 (14) 0.92987 (12) 0.0261 (4)
C27 0.62470 (18) 0.21991 (16) 0.83731 (13) 0.0304 (4)
N1 0.45699 (13) 0.29884 (10) 0.77360 (9) 0.0185 (3)
N11 0.32034 (13) 0.26396 (10) 0.89240 (9) 0.0194 (3)
N14 0.28079 (13) 0.18525 (10) 0.76808 (9) 0.0192 (3)
N17 0.19945 (13) −0.05261 (11) 0.96885 (9) 0.0211 (3)
N19 0.20655 (14) −0.11236 (11) 1.10046 (9) 0.0243 (3)
O1 0.52932 (11) 0.20898 (8) 0.77451 (8) 0.0220 (3)
O9 0.38366 (12) 0.51505 (9) 0.96104 (8) 0.0242 (3)
O10 0.33924 (13) 0.33375 (10) 1.02538 (8) 0.0297 (3)
O13 0.23426 (11) 0.02613 (9) 0.81455 (7) 0.0227 (3)
H4 0.230 (2) 0.4816 (18) 0.6029 (14) 0.036 (6)*
H5 0.3779 (19) 0.4836 (16) 0.4900 (13) 0.023 (5)*
H6 0.5638 (17) 0.3927 (14) 0.5057 (12) 0.015 (4)*
H7 0.613 (2) 0.3112 (16) 0.6374 (13) 0.026 (5)*
H8 0.2979 (17) 0.5235 (15) 0.8010 (12) 0.015 (4)*
H14 0.284 (2) 0.1668 (17) 0.7172 (15) 0.027 (5)*
H15 0.3009 (18) 0.1647 (16) 1.0401 (13) 0.021 (5)*
H17 0.198 (2) −0.0459 (17) 0.9125 (15) 0.029 (5)*
H18 0.1494 (17) −0.1977 (14) 0.9977 (12) 0.016 (4)*
H20 0.269 (2) 0.0184 (16) 1.1564 (14) 0.028 (5)*
H22 0.118 (3) 0.318 (2) 0.6324 (17) 0.050 (7)*
H24A 0.095 (2) 0.5062 (18) 0.6938 (15) 0.037 (6)*
H24B 0.080 (2) 0.522 (2) 0.7904 (16) 0.042 (7)*
H24C −0.028 (3) 0.4672 (19) 0.7331 (16) 0.045 (7)*
H26A 0.4374 (17) 0.6236 (14) 0.8794 (12) 0.015 (4)*
H26B 0.412 (2) 0.6584 (18) 0.9782 (16) 0.040 (6)*
H26C 0.294 (2) 0.6392 (17) 0.9142 (14) 0.029 (5)*
H27A 0.676 (2) 0.2766 (19) 0.8265 (15) 0.035 (6)*
H27B 0.668 (2) 0.1612 (18) 0.8349 (15) 0.033 (6)*
H27C 0.590 (2) 0.2315 (17) 0.8929 (14) 0.028 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0247 (8) 0.0158 (7) 0.0153 (8) −0.0008 (6) −0.0003 (6) −0.0016 (6)
C3 0.0253 (8) 0.0165 (7) 0.0166 (8) 0.0022 (6) 0.0003 (6) −0.0005 (6)
C3A 0.0255 (8) 0.0138 (7) 0.0189 (8) −0.0011 (7) −0.0012 (7) −0.0018 (6)
C4 0.0291 (9) 0.0183 (8) 0.0213 (8) 0.0007 (7) −0.0043 (7) 0.0012 (7)
C5 0.0352 (9) 0.0207 (9) 0.0199 (8) −0.0039 (7) −0.0023 (7) 0.0046 (7)
C6 0.0305 (9) 0.0223 (9) 0.0210 (8) −0.0057 (7) 0.0028 (7) 0.0005 (7)
C7 0.0258 (8) 0.0180 (8) 0.0223 (8) −0.0022 (7) 0.0005 (7) −0.0026 (7)
C7A 0.0259 (8) 0.0120 (7) 0.0167 (7) −0.0028 (6) −0.0016 (6) −0.0026 (6)
C8 0.0273 (8) 0.0132 (8) 0.0229 (9) 0.0008 (6) 0.0041 (7) −0.0003 (7)
C9 0.0258 (8) 0.0165 (8) 0.0206 (8) −0.0009 (7) 0.0045 (7) −0.0040 (7)
C10 0.0286 (8) 0.0174 (8) 0.0181 (8) −0.0010 (7) 0.0014 (7) −0.0034 (6)
C12 0.0215 (7) 0.0157 (7) 0.0198 (8) 0.0002 (6) 0.0017 (6) −0.0014 (7)
C13 0.0209 (7) 0.0170 (8) 0.0181 (8) 0.0009 (6) −0.0005 (6) 0.0001 (6)
C15 0.0252 (8) 0.0173 (8) 0.0176 (8) 0.0007 (7) 0.0001 (6) −0.0023 (6)
C16 0.0241 (8) 0.0191 (8) 0.0179 (8) −0.0003 (7) 0.0006 (6) −0.0021 (7)
C18 0.0310 (8) 0.0176 (8) 0.0213 (8) −0.0049 (7) 0.0007 (7) 0.0020 (7)
C20 0.0306 (8) 0.0199 (8) 0.0190 (8) −0.0018 (7) 0.0005 (7) 0.0003 (7)
C21 0.0238 (8) 0.0233 (9) 0.0264 (9) 0.0050 (7) −0.0002 (7) −0.0004 (7)
C22 0.0275 (9) 0.0345 (10) 0.0257 (9) 0.0009 (8) −0.0031 (8) −0.0011 (8)
C23 0.0451 (12) 0.0505 (13) 0.0446 (13) −0.0061 (11) 0.0018 (11) −0.0054 (11)
C24 0.0290 (10) 0.0293 (10) 0.0374 (11) 0.0085 (8) 0.0022 (8) 0.0036 (10)
C25 0.0258 (8) 0.0300 (9) 0.0286 (9) 0.0006 (7) 0.0018 (7) 0.0002 (8)
C26 0.0373 (10) 0.0160 (9) 0.0250 (9) −0.0044 (8) 0.0029 (8) −0.0023 (7)
C27 0.0309 (9) 0.0292 (10) 0.0310 (11) 0.0080 (8) −0.0100 (8) −0.0010 (8)
N1 0.0244 (7) 0.0121 (6) 0.0189 (7) 0.0027 (5) 0.0004 (6) 0.0024 (5)
N11 0.0274 (7) 0.0149 (7) 0.0161 (7) −0.0006 (5) 0.0004 (5) −0.0001 (5)
N14 0.0280 (7) 0.0152 (7) 0.0145 (7) −0.0004 (5) −0.0012 (5) −0.0016 (5)
N17 0.0273 (7) 0.0195 (7) 0.0164 (7) −0.0026 (6) 0.0004 (6) 0.0009 (6)
N19 0.0329 (7) 0.0188 (7) 0.0211 (7) −0.0022 (6) 0.0019 (6) 0.0027 (6)
O1 0.0284 (6) 0.0152 (6) 0.0222 (6) 0.0062 (5) −0.0023 (5) −0.0006 (5)
O9 0.0369 (6) 0.0156 (6) 0.0202 (6) −0.0040 (5) 0.0016 (5) −0.0021 (5)
O10 0.0526 (8) 0.0206 (6) 0.0159 (6) −0.0076 (6) 0.0019 (6) −0.0022 (5)
O13 0.0340 (6) 0.0157 (6) 0.0184 (6) −0.0052 (5) −0.0009 (5) −0.0011 (5)

Geometric parameters (Å, º)

O1—N1 1.4233 (17) C12—C13 1.490 (2)
O1—C27 1.430 (2) C12—C15 1.350 (2)
O9—C9 1.354 (2) C15—C16 1.439 (2)
O9—C26 1.427 (2) C16—C20 1.381 (2)
O10—C10 1.220 (2) C21—C22 1.523 (3)
O13—C13 1.237 (2) C21—C24 1.549 (3)
N1—C2 1.486 (2) C21—C25 1.531 (2)
N1—C7A 1.419 (2) C22—C23 1.324 (3)
N11—C2 1.457 (2) C4—H4 0.97 (3)
N11—C10 1.375 (2) C5—H5 1.00 (2)
N11—C12 1.413 (2) C6—H6 0.955 (19)
N14—C2 1.432 (2) C7—H7 0.95 (2)
N14—C13 1.336 (2) C8—H8 0.92 (2)
N17—C16 1.377 (2) C15—H15 0.95 (2)
N17—C18 1.350 (2) C18—H18 0.984 (19)
N19—C18 1.317 (2) C20—H20 1.00 (2)
N19—C20 1.376 (2) C22—H22 0.93 (3)
N14—H14 0.83 (2) C23—H23A 0.9500
N17—H17 0.89 (2) C23—H23B 0.9500
C2—C3 1.559 (2) C24—H24A 0.97 (2)
C3—C3A 1.531 (2) C24—H24B 0.97 (3)
C3—C8 1.523 (2) C24—H24C 0.98 (3)
C3—C21 1.585 (2) C25—H25A 0.9800
C3A—C4 1.382 (2) C25—H25B 0.9800
C3A—C7A 1.400 (2) C25—H25C 0.9800
C4—C5 1.397 (3) C26—H26A 0.993 (19)
C5—C6 1.388 (3) C26—H26B 0.99 (2)
C6—C7 1.389 (3) C26—H26C 1.03 (2)
C7—C7A 1.377 (2) C27—H27A 0.95 (2)
C8—C9 1.336 (2) C27—H27B 0.91 (2)
C9—C10 1.494 (2) C27—H27C 0.96 (2)
N1—O1—C27 108.47 (12) N11—C12—C13 104.59 (13)
C9—O9—C26 115.18 (13) N11—C12—C15 125.37 (16)
O1—N1—C2 111.62 (12) C13—C12—C15 130.04 (15)
O1—N1—C7A 113.01 (12) O13—C13—N14 125.21 (15)
C2—N1—C7A 104.88 (12) O13—C13—C12 127.39 (15)
C2—N11—C10 120.79 (14) N14—C13—C12 107.39 (13)
C2—N11—C12 111.34 (13) C12—C15—C16 129.35 (16)
C10—N11—C12 127.64 (14) C12—C15—H15 120.2 (13)
C2—N14—C13 113.94 (14) C16—C15—H15 110.4 (13)
C2—N14—H14 125.3 (16) N17—C16—C15 127.83 (15)
C13—N14—H14 118.2 (16) N17—C16—C20 104.91 (14)
C16—N17—C18 107.78 (14) C15—C16—C20 127.23 (16)
C16—N17—H17 120.0 (15) N17—C18—N19 111.65 (15)
C18—N17—H17 131.7 (15) N17—C18—H18 121.8 (11)
C18—N19—C20 105.57 (15) N19—C18—H18 126.4 (11)
N1—C2—N11 110.39 (13) N19—C20—C16 110.06 (15)
N1—C2—N14 112.43 (13) N19—C20—H20 118.9 (12)
N1—C2—C3 101.31 (12) C16—C20—H20 131.0 (12)
N11—C2—N14 102.12 (13) C3—C21—C22 111.13 (14)
N11—C2—C3 115.23 (13) C3—C21—C25 111.21 (14)
N14—C2—C3 115.70 (13) C3—C21—C24 108.89 (15)
C2—C3—C3A 99.48 (13) C22—C21—C24 107.71 (15)
C2—C3—C8 105.75 (13) C22—C21—C25 110.94 (15)
C2—C3—C21 115.56 (14) C24—C21—C25 106.77 (15)
C3A—C3—C8 106.43 (13) C21—C22—C23 126.4 (2)
C3A—C3—C21 117.03 (14) C21—C22—H22 114.8 (17)
C8—C3—C21 111.33 (14) C23—C22—H22 118.2 (17)
C3—C3A—C4 132.71 (16) C22—C23—H23A 120.0
C3—C3A—C7A 108.31 (14) C22—C23—H23B 120.0
C4—C3A—C7A 118.92 (16) H23A—C23—H23B 120.0
C3A—C4—C5 119.03 (17) C21—C24—H24A 111.4 (14)
C3A—C4—H4 121.0 (14) C21—C24—H24B 113.5 (15)
C5—C4—H4 119.9 (14) H24A—C24—H24B 104.9 (19)
C4—C5—C6 120.91 (16) C21—C24—H24C 106.7 (15)
C4—C5—H5 120.0 (12) H24A—C24—H24C 105 (2)
C6—C5—H5 119.0 (12) H24B—C24—H24C 115 (2)
C5—C6—C7 120.61 (17) C21—C25—H25A 109.5
C5—C6—H6 120.1 (11) C21—C25—H25B 109.5
C7—C6—H6 119.2 (11) C21—C25—H25C 109.5
C6—C7—C7A 117.74 (16) H25A—C25—H25B 109.5
C6—C7—H7 123.6 (13) H25A—C25—H25C 109.5
C7A—C7—H7 118.6 (13) H25B—C25—H25C 109.5
N1—C7A—C3A 109.40 (14) O9—C26—H26A 111.0 (11)
N1—C7A—C7 127.75 (15) O9—C26—H26B 105.4 (14)
C3A—C7A—C7 122.73 (15) O9—C26—H26C 111.6 (13)
C3—C8—C9 123.06 (15) H26A—C26—H26B 111.1 (18)
C3—C8—H8 113.4 (11) H26A—C26—H26C 109.5 (16)
C9—C8—H8 123.3 (12) H26B—C26—H26C 108.2 (19)
O9—C9—C8 126.76 (16) O1—C27—H27A 112.0 (14)
O9—C9—C10 110.32 (14) O1—C27—H27B 104.8 (14)
C8—C9—C10 122.71 (15) O1—C27—H27C 111.2 (13)
O10—C10—N11 123.31 (16) H27A—C27—H27B 112.0 (19)
O10—C10—C9 122.29 (15) H27A—C27—H27C 105.0 (19)
N11—C10—C9 114.34 (14) H27B—C27—H27C 112.0 (19)
C2—N1—O1—C27 −116.05 (15) C12—C15—C16—N17 −3.6 (3)
C7A—N1—O1—C27 126.02 (15) C12—C15—C16—C20 173.90 (17)
C8—C9—O9—C26 0.1 (2) N17—C16—C20—N19 1.06 (19)
C10—C9—O9—C26 −174.67 (15) C15—C16—C20—N19 −176.90 (16)
C3—C21—C22—C23 142.1 (2) C8—C3—C21—C22 165.31 (14)
C24—C21—C22—C23 −98.7 (2) C3A—C3—C21—C22 42.6 (2)
C25—C21—C22—C23 17.8 (3) C2—C3—C21—C22 −74.04 (19)
N14—C2—C3—C8 164.60 (14) C8—C3—C21—C25 −70.57 (19)
N11—C2—C3—C8 45.63 (18) C3A—C3—C21—C25 166.75 (14)
N1—C2—C3—C8 −73.52 (15) C2—C3—C21—C25 50.1 (2)
N14—C2—C3—C3A −85.22 (16) C8—C3—C21—C24 46.82 (19)
N11—C2—C3—C3A 155.80 (14) C3A—C3—C21—C24 −75.86 (19)
N1—C2—C3—C3A 36.66 (15) C2—C3—C21—C24 167.47 (15)
N14—C2—C3—C21 41.0 (2) C7—C7A—N1—O1 −35.1 (2)
N11—C2—C3—C21 −78.00 (18) C3A—C7A—N1—O1 148.75 (13)
N1—C2—C3—C21 162.85 (14) C7—C7A—N1—C2 −156.93 (16)
C8—C3—C3A—C4 −89.6 (2) C3A—C7A—N1—C2 26.94 (16)
C2—C3—C3A—C4 160.80 (18) N14—C2—N1—C7A 84.27 (15)
C21—C3—C3A—C4 35.6 (3) N11—C2—N1—C7A −162.41 (12)
C8—C3—C3A—C7A 87.46 (16) C3—C2—N1—C7A −39.85 (15)
C2—C3—C3A—C7A −22.17 (16) N14—C2—N1—O1 −38.44 (17)
C21—C3—C3A—C7A −147.36 (14) N11—C2—N1—O1 74.88 (16)
C7A—C3A—C4—C5 2.4 (2) C3—C2—N1—O1 −162.57 (12)
C3—C3A—C4—C5 179.14 (17) O10—C10—N11—C12 11.2 (3)
C3A—C4—C5—C6 −1.6 (3) C9—C10—N11—C12 −165.97 (16)
C4—C5—C6—C7 −0.9 (3) O10—C10—N11—C2 −174.82 (17)
C5—C6—C7—C7A 2.5 (3) C9—C10—N11—C2 8.0 (2)
C6—C7—C7A—C3A −1.7 (2) C15—C12—N11—C10 −8.3 (3)
C6—C7—C7A—N1 −177.36 (15) C13—C12—N11—C10 171.09 (15)
C4—C3A—C7A—C7 −0.7 (2) C15—C12—N11—C2 177.29 (16)
C3—C3A—C7A—C7 −178.25 (15) C13—C12—N11—C2 −3.37 (17)
C4—C3A—C7A—N1 175.62 (15) N14—C2—N11—C10 −168.15 (14)
C3—C3A—C7A—N1 −1.89 (17) N1—C2—N11—C10 72.10 (18)
C3A—C3—C8—C9 −126.85 (17) C3—C2—N11—C10 −41.9 (2)
C2—C3—C8—C9 −21.7 (2) N14—C2—N11—C12 6.74 (17)
C21—C3—C8—C9 104.56 (19) N1—C2—N11—C12 −113.01 (14)
C3—C8—C9—O9 176.00 (16) C3—C2—N11—C12 133.00 (14)
C3—C8—C9—C10 −9.9 (3) O13—C13—N14—C2 −174.18 (15)
C8—C9—C10—O10 −158.30 (18) C12—C13—N14—C2 6.41 (18)
O9—C9—C10—O10 16.7 (2) N11—C2—N14—C13 −8.14 (18)
C8—C9—C10—N11 18.9 (2) N1—C2—N14—C13 110.17 (15)
O9—C9—C10—N11 −166.11 (14) C3—C2—N14—C13 −134.10 (15)
C15—C12—C13—O13 −1.8 (3) N19—C18—N17—C16 1.5 (2)
N11—C12—C13—O13 178.90 (15) C20—C16—N17—C18 −1.49 (18)
C15—C12—C13—N14 177.59 (17) C15—C16—N17—C18 176.46 (16)
N11—C12—C13—N14 −1.72 (17) N17—C18—N19—C20 −0.8 (2)
N11—C12—C15—C16 177.70 (16) C16—C20—N19—C18 −0.2 (2)
C13—C12—C15—C16 −1.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N17—H17···O13 0.89 (2) 1.85 (2) 2.6562 (19) 151 (2)
N14—H14···N19i 0.83 (2) 1.97 (2) 2.798 (2) 175 (2)
C4—H4···O9ii 0.97 (2) 2.54 (2) 3.154 (2) 121.5 (16)
C20—H20···O13iii 1.00 (2) 2.54 (2) 3.353 (2) 137.9 (16)
C24—H24C···O13iv 0.98 (3) 2.47 (3) 3.382 (2) 154 (2)

Symmetry codes: (i) −x+1/2, −y, z−1/2; (ii) −x+1/2, −y+1, z−1/2; (iii) −x+1/2, −y, z+1/2; (iv) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6738).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Koizumi, Y., Arai, M., Tomoda, H. & Omura, S. (2004). Biochim. Biophys. Acta, 1693, 47–55. [DOI] [PubMed]
  6. Nagel, D. W., Pachler, K. G. R., Steyn, P. S., Wessels, P. L., Gafner, G. & Kruger, G. J. (1974). Chem. Commun. pp. 1021–1022.
  7. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Steyn, P. S. (1970). Tetrahedron, 26, 51–57. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019423/hb6738sup1.cif

e-68-o1626-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019423/hb6738Isup2.hkl

e-68-o1626-Isup2.hkl (181.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES