Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1627. doi: 10.1107/S1600536812018478

1,1′-Bicyclo­hexyl-1,1′-diyl 1,1′-biphenyl-2,2′-dicarboxyl­ate

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Dongdong Wu b, Yan Zhang b
PMCID: PMC3379232  PMID: 22719430

Abstract

The title compound, C26H28O4, lies about a crystallographic twofold rotation axis. The cyclo­hexane rings adopt a chair conformation. The two benzene rings form a dihedral angle of 40.82 (3)°. No significant intra- or inter­molecular inter­actions are observed in the crystal structure.

Related literature  

For general background to and the biological activity of the title compound, see: Lei et al. (2004); Wu et al. (2002, 2012); Quideau et al. (1996); Yoshimura et al. (2008). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-68-o1627-scheme1.jpg

Experimental  

Crystal data  

  • C26H28O4

  • M r = 404.48

  • Monoclinic, Inline graphic

  • a = 16.8289 (7) Å

  • b = 10.5919 (5) Å

  • c = 11.4752 (5) Å

  • β = 99.967 (1)°

  • V = 2014.58 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.38 × 0.37 × 0.37 mm

Data collection  

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.967, T max = 0.968

  • 16772 measured reflections

  • 4382 independent reflections

  • 4006 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.107

  • S = 1.05

  • 4382 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018478/is5122sup1.cif

e-68-o1627-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018478/is5122Isup2.hkl

e-68-o1627-Isup2.hkl (214.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018478/is5122Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is acknowledged.

supplementary crystallographic information

Comment

Biaryl motifs are present in a large number of natural products, dyes, chiral ligands and chiral catalysts (Lei et al., 2004, Wu et al., 2002). Biphenyl-containing medium-sized lactones containing biaryl motif are also important structural core found in many biologically active natural products, such as ellagitannins family (Quideau et al., 1996). Flavonol glucuronides and C-glucosidic ellagitannins which were isolated from the leaves of Melaleuca squarrosa shown in vitro antioxidant activity that can be evaluated by DPPH radical in the usual way (Yoshimura et al., 2008). The crystal structures of 5,10-dioxo-5,7,8,10-tetrahydrodibenzo[f,h] [1,4]dioxecin-7-yl benzoate, 7-methyl-8-phenyl-7,8-dihydrodibenzo [f,h][1,4]dioxecine-5,10-dione and 7-phenyl-7,8-dihydro-[1,4]dioxecino[7,6-b:8,9-b'] dipyridine-5,10-dione (Wu et al., 2012) have been reported. Due to the importance of the biphenyl-containing medium-sized rings, we report here the crystal structure of the title compound in this paper.

The title compound, Fig. 1, lies about a crystallographic twofold axis generated by the symmetry code -x+1, y, -z+1/2. The cyclohexane ring (C8–C13) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.5752 (7) Å, Θ = 177.40 (7)° and φ = 114.1 (14)°. The two benzene rings (C1–C6 & C1A–C6A) form a dihedral angle of 40.82 (3)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges. There are no significant hydrogen bonds observed in this compound.

Experimental

The title compound was the product from the photooxidation between 2,3- dispirocyclohexyl-2,3-dihydrophenanthro[9,10-b][1,4]dioxine and oxygen. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:10) as eluents. X-ray quality crystals of the title compound, were obtained from slow evaporation of an acetone and petroleum ether solution (1:10).

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 or 0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Atoms with suffix A were generated by the symmetry code -x + 1, y, -z + 1/2.

Crystal data

C26H28O4 F(000) = 864
Mr = 404.48 Dx = 1.334 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9620 reflections
a = 16.8289 (7) Å θ = 4.2–35.0°
b = 10.5919 (5) Å µ = 0.09 mm1
c = 11.4752 (5) Å T = 100 K
β = 99.967 (1)° Block, colourless
V = 2014.58 (15) Å3 0.38 × 0.37 × 0.37 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 4382 independent reflections
Radiation source: fine-focus sealed tube 4006 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 35.0°, θmin = 4.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −21→27
Tmin = 0.967, Tmax = 0.968 k = −17→12
16772 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.7551P] where P = (Fo2 + 2Fc2)/3
4382 reflections (Δ/σ)max = 0.001
136 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.42941 (3) 0.08237 (4) 0.17817 (4) 0.01098 (9)
O2 0.41218 (3) 0.19432 (4) 0.34309 (4) 0.01462 (9)
C1 0.35947 (4) 0.30612 (6) 0.05831 (5) 0.01532 (11)
H1A 0.3278 0.2356 0.0346 0.018*
C2 0.34982 (4) 0.41537 (6) −0.01047 (6) 0.01852 (12)
H2A 0.3112 0.4184 −0.0790 0.022*
C3 0.39828 (4) 0.51981 (6) 0.02401 (6) 0.01974 (12)
H3A 0.3915 0.5936 −0.0205 0.024*
C4 0.45706 (4) 0.51343 (6) 0.12541 (6) 0.01746 (11)
H4A 0.4903 0.5828 0.1463 0.021*
C5 0.46751 (3) 0.40532 (5) 0.19691 (5) 0.01327 (10)
C6 0.41629 (3) 0.30170 (5) 0.16241 (5) 0.01239 (10)
C7 0.41890 (3) 0.18771 (5) 0.24002 (5) 0.01133 (10)
C8 0.45225 (3) −0.04149 (5) 0.23283 (5) 0.01039 (9)
C9 0.42275 (3) −0.13489 (5) 0.13258 (5) 0.01332 (10)
H9A 0.4472 −0.1135 0.0646 0.016*
H9B 0.4405 −0.2192 0.1580 0.016*
C10 0.33088 (4) −0.13507 (6) 0.09545 (6) 0.01723 (11)
H10A 0.3136 −0.0540 0.0606 0.021*
H10B 0.3156 −0.1995 0.0357 0.021*
C11 0.28797 (4) −0.16018 (7) 0.19990 (6) 0.01998 (12)
H11A 0.2992 −0.2457 0.2283 0.024*
H11B 0.2302 −0.1520 0.1746 0.024*
C12 0.31654 (4) −0.06665 (6) 0.29988 (6) 0.01688 (11)
H12A 0.2913 −0.0868 0.3675 0.020*
H12B 0.3003 0.0181 0.2739 0.020*
C13 0.40844 (3) −0.07157 (5) 0.33654 (5) 0.01320 (10)
H13A 0.4241 −0.1551 0.3668 0.016*
H13B 0.4250 −0.0113 0.3998 0.016*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.01283 (17) 0.00808 (16) 0.01182 (17) 0.00106 (12) 0.00151 (13) 0.00043 (12)
O2 0.01673 (19) 0.01344 (19) 0.01440 (18) 0.00038 (14) 0.00467 (14) −0.00096 (13)
C1 0.0149 (2) 0.0138 (2) 0.0166 (2) 0.00300 (17) 0.00097 (18) 0.00128 (17)
C2 0.0185 (3) 0.0183 (3) 0.0184 (3) 0.0063 (2) 0.0021 (2) 0.0042 (2)
C3 0.0218 (3) 0.0154 (3) 0.0227 (3) 0.0061 (2) 0.0056 (2) 0.0066 (2)
C4 0.0194 (3) 0.0105 (2) 0.0231 (3) 0.00200 (18) 0.0056 (2) 0.00334 (19)
C5 0.0143 (2) 0.0090 (2) 0.0169 (2) 0.00124 (16) 0.00385 (17) 0.00066 (16)
C6 0.0132 (2) 0.0093 (2) 0.0148 (2) 0.00178 (16) 0.00282 (17) 0.00097 (16)
C7 0.0099 (2) 0.0095 (2) 0.0145 (2) 0.00032 (15) 0.00178 (16) −0.00049 (15)
C8 0.0114 (2) 0.00798 (19) 0.0115 (2) −0.00010 (15) 0.00114 (15) 0.00068 (15)
C9 0.0140 (2) 0.0106 (2) 0.0143 (2) −0.00026 (16) −0.00064 (17) −0.00214 (16)
C10 0.0144 (2) 0.0169 (2) 0.0187 (3) −0.00241 (18) −0.00193 (19) −0.00231 (19)
C11 0.0146 (2) 0.0195 (3) 0.0248 (3) −0.0057 (2) 0.0004 (2) 0.0012 (2)
C12 0.0132 (2) 0.0189 (3) 0.0191 (2) −0.00175 (18) 0.00416 (19) 0.00251 (19)
C13 0.0133 (2) 0.0133 (2) 0.0132 (2) −0.00114 (16) 0.00258 (17) 0.00192 (16)

Geometric parameters (Å, º)

O1—C7 1.3503 (7) C8—C13 1.5379 (8)
O1—C8 1.4760 (7) C8—C8i 1.5872 (11)
O2—C7 1.2095 (7) C9—C10 1.5310 (8)
C1—C2 1.3942 (8) C9—H9A 0.9700
C1—C6 1.3958 (8) C9—H9B 0.9700
C1—H1A 0.9300 C10—C11 1.5258 (10)
C2—C3 1.3906 (10) C10—H10A 0.9700
C2—H2A 0.9300 C10—H10B 0.9700
C3—C4 1.3923 (10) C11—C12 1.5290 (10)
C3—H3A 0.9300 C11—H11A 0.9700
C4—C5 1.4020 (8) C11—H11B 0.9700
C4—H4A 0.9300 C12—C13 1.5318 (8)
C5—C6 1.4094 (8) C12—H12A 0.9700
C5—C5i 1.4896 (12) C12—H12B 0.9700
C6—C7 1.4964 (8) C13—H13A 0.9700
C8—C9 1.5332 (8) C13—H13B 0.9700
C7—O1—C8 124.00 (4) C10—C9—H9A 109.0
C2—C1—C6 120.51 (6) C8—C9—H9A 109.0
C2—C1—H1A 119.7 C10—C9—H9B 109.0
C6—C1—H1A 119.7 C8—C9—H9B 109.0
C3—C2—C1 119.61 (6) H9A—C9—H9B 107.8
C3—C2—H2A 120.2 C11—C10—C9 111.97 (5)
C1—C2—H2A 120.2 C11—C10—H10A 109.2
C2—C3—C4 119.74 (6) C9—C10—H10A 109.2
C2—C3—H3A 120.1 C11—C10—H10B 109.2
C4—C3—H3A 120.1 C9—C10—H10B 109.2
C3—C4—C5 121.85 (6) H10A—C10—H10B 107.9
C3—C4—H4A 119.1 C10—C11—C12 110.27 (5)
C5—C4—H4A 119.1 C10—C11—H11A 109.6
C4—C5—C6 117.58 (6) C12—C11—H11A 109.6
C4—C5—C5i 118.60 (4) C10—C11—H11B 109.6
C6—C5—C5i 123.81 (4) C12—C11—H11B 109.6
C1—C6—C5 120.62 (5) H11A—C11—H11B 108.1
C1—C6—C7 118.79 (5) C11—C12—C13 110.82 (5)
C5—C6—C7 120.51 (5) C11—C12—H12A 109.5
O2—C7—O1 127.21 (5) C13—C12—H12A 109.5
O2—C7—C6 122.49 (5) C11—C12—H12B 109.5
O1—C7—C6 110.30 (5) C13—C12—H12B 109.5
O1—C8—C9 103.18 (4) H12A—C12—H12B 108.1
O1—C8—C13 112.87 (4) C12—C13—C8 112.14 (5)
C9—C8—C13 108.10 (4) C12—C13—H13A 109.2
O1—C8—C8i 106.46 (3) C8—C13—H13A 109.2
C9—C8—C8i 111.63 (4) C12—C13—H13B 109.2
C13—C8—C8i 114.10 (5) C8—C13—H13B 109.2
C10—C9—C8 112.94 (5) H13A—C13—H13B 107.9
C6—C1—C2—C3 1.18 (10) C1—C6—C7—O1 56.26 (7)
C1—C2—C3—C4 1.34 (10) C5—C6—C7—O1 −126.93 (5)
C2—C3—C4—C5 −2.06 (10) C7—O1—C8—C9 157.39 (5)
C3—C4—C5—C6 0.24 (9) C7—O1—C8—C13 40.97 (7)
C3—C4—C5—C5i 179.20 (6) C7—O1—C8—C8i −84.97 (6)
C2—C1—C6—C5 −3.04 (9) O1—C8—C9—C10 −64.78 (6)
C2—C1—C6—C7 173.76 (5) C13—C8—C9—C10 54.98 (6)
C4—C5—C6—C1 2.29 (8) C8i—C8—C9—C10 −178.73 (4)
C5i—C5—C6—C1 −176.60 (6) C8—C9—C10—C11 −55.23 (7)
C4—C5—C6—C7 −174.45 (5) C9—C10—C11—C12 54.07 (7)
C5i—C5—C6—C7 6.65 (10) C10—C11—C12—C13 −55.70 (7)
C8—O1—C7—O2 −13.97 (9) C11—C12—C13—C8 58.70 (6)
C8—O1—C7—C6 166.08 (5) O1—C8—C13—C12 56.62 (6)
C1—C6—C7—O2 −123.70 (6) C9—C8—C13—C12 −56.84 (6)
C5—C6—C7—O2 53.11 (8) C8i—C8—C13—C12 178.33 (4)

Symmetry code: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5122).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Lei, A., Wu, S., He, M. & Zhang, X. (2004). J. Am. Chem. Soc. 126, 1626–1627. [DOI] [PubMed]
  6. Quideau, S. & Feldman, K. S. (1996). Chem. Rev. 96, 475–503. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wu, S., Wang, W., Tang, W., Lin, M. & Zhang, X. (2002). Org. Lett. 4, 4495–4497. [DOI] [PubMed]
  10. Wu, D., Wang, L., Xu, K., Song, J., Fun, H.-K., Xu, J. & Zhang, Y. (2012). Chem. Commun. 48, 1168–1170. [DOI] [PubMed]
  11. Yoshimura, M., Ito, H., Miyashita, K., Hatano, T., Taniguchi, S., Amakura, Y. & Yoshida, T. (2008). Phytochemistry, 69, 3062–3069. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018478/is5122sup1.cif

e-68-o1627-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018478/is5122Isup2.hkl

e-68-o1627-Isup2.hkl (214.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018478/is5122Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES