Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1631–o1632. doi: 10.1107/S1600536812019320

5-Bromo-4-(3,4-dimeth­oxy­phen­yl)thia­zol-2-amine

Hazem A Ghabbour a, Tze Shyang Chia b, Hoong-Kun Fun b,*,
PMCID: PMC3379236  PMID: 22719434

Abstract

In the title compound, C11H11BrN2O2S, the thia­zole ring makes a dihedral angle of 53.16 (11)° with the adjacent benzene ring. The two meth­oxy groups are slightly twisted from the attached benzene ring with C—O—C—C torsion angles of −9.2 (3) and −5.5 (3)°. In the crystal, mol­ecules are linked by a pair of N—H⋯N hydrogen bonds into an inversion dimer with an R 2 2(8) ring motif. The dimers are further connected by N—H⋯O hydrogen bonds into a tape along [-110].

Related literature  

For applications of the thia­zole ring system, see: Hargrave et al. (1983); Patt et al. (1992); Haviv et al. (1988); Jaen et al. (1990); Tsuji & Ishikawa (1994); Bell et al. (1995). For applications of amino­thia­zoles, see: Fink et al. (1999); Van Muijlwijk-Koezen et al. (2001); Metzger (1984). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the preparation, see: Das et al. (2006). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1631-scheme1.jpg

Experimental  

Crystal data  

  • C11H11BrN2O2S

  • M r = 315.19

  • Triclinic, Inline graphic

  • a = 7.4873 (2) Å

  • b = 8.0359 (2) Å

  • c = 10.6428 (3) Å

  • α = 86.571 (2)°

  • β = 77.633 (2)°

  • γ = 85.330 (2)°

  • V = 622.82 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.46 mm−1

  • T = 100 K

  • 0.45 × 0.20 × 0.09 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.305, T max = 0.737

  • 10861 measured reflections

  • 2121 independent reflections

  • 1888 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.071

  • S = 1.12

  • 2121 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019320/is5132sup1.cif

e-68-o1631-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019320/is5132Isup2.hkl

e-68-o1631-Isup2.hkl (104.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019320/is5132Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯O1i 0.78 (3) 2.40 (3) 2.992 (3) 134 (3)
N2—H2N2⋯O2i 0.78 (3) 2.37 (3) 3.112 (3) 161 (3)
N2—H1N2⋯N1ii 0.81 (3) 2.20 (3) 2.998 (3) 168 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HAG thanks the Deanship of Scientific Research and Research Center, College of Pharmacy, King Saud University. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

The thiazole ring system is a useful structural motif found in numerous biologically active molecules. This structure has found applications in drug development for the treatment of allergies (Hargrave et al., 1983), hypertension (Patt et al., 1992), inflammation (Haviv et al., 1988), schizophrenia (Jaen et al., 1990), bacterial (Tsuji & Ishikawa, 1994) and HIV infections (Bell et al., 1995). Aminothiazoles are known to be ligands of estrogen receptors (Fink et al., 1999) as well as a novel class of adenosine receptor antagonists (Van Muijlwijk-Koezen et al., 2001). Other analogues are used as fungicides, inhibiting in vivo growth of Xanthomonas, as an ingredient of herbicides or as schistosomicidal and anthelmintic drugs (Metzger, 1984).

In the title compound (Fig. 1), the thiazole ring (S1/N1/C7–C9) makes a dihedral angle of 53.16 (11)° with the adjacent benzene ring (C1–C6). The two methoxy groups (O1/C10 & O2/C11) are slightly twisted from the C1–C6 ring with torsion angles C10—O1—C3—C2 = -9.2 (3) and C11—O2—C4—C5 = -5.5 (3)°.

In the crystal packing (Fig. 2 & 3), the molecules are linked by intermolecular N2—H1N2···N1 hydrogen bonds into dimers with R22(8) ring motifs (Bernstein et al., 1995). The dimers are further connected by intermolecular N2—H2N2···O1 and N2—H2N2···O2 hydrogen bonds (Table 1) into infinite tapes along [110].

Experimental

The title compound was prepared from the reaction of 4-(3,4-dimethoxyphenyl)thiazol-2-amine (236 mg, 1 mmol) with bromine (161 mg, 1.1 mmol) in glacial acetic acid and heated at 80 °C for 1.5 h. Single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by the slow evaporation of the solvent at room temperature after several days (Das et al., 2006).

Refinement

Atom H1N2 and H2N2 were located in a difference Fourier map and refined freely [N—H = 0.80 (3) and 0.78 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. Three outliers (-2 6 4), (5 -3 8) and (5 -2 9) were omitted.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.

Fig. 3.

Fig. 3.

The crystal packing of the title compound viewed along [1 1 0].

Crystal data

C11H11BrN2O2S Z = 2
Mr = 315.19 F(000) = 316
Triclinic, P1 Dx = 1.681 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4873 (2) Å Cell parameters from 7495 reflections
b = 8.0359 (2) Å θ = 2.6–35.5°
c = 10.6428 (3) Å µ = 3.46 mm1
α = 86.571 (2)° T = 100 K
β = 77.633 (2)° Plate, brown
γ = 85.330 (2)° 0.45 × 0.20 × 0.09 mm
V = 622.82 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2121 independent reflections
Radiation source: fine-focus sealed tube 1888 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.305, Tmax = 0.737 k = −9→9
10861 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.1359P] where P = (Fo2 + 2Fc2)/3
2121 reflections (Δ/σ)max = 0.002
164 parameters Δρmax = 1.17 e Å3
0 restraints Δρmin = −0.73 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.16418 (3) 0.27703 (3) 1.04837 (2) 0.02360 (12)
S1 −0.30599 (8) 0.51061 (8) 0.84026 (6) 0.01865 (17)
O1 0.6319 (2) −0.1031 (2) 0.74403 (16) 0.0203 (4)
O2 0.4088 (2) −0.1521 (2) 0.60126 (16) 0.0213 (4)
N1 −0.0368 (3) 0.4074 (3) 0.6600 (2) 0.0187 (5)
N2 −0.2487 (4) 0.5970 (3) 0.5852 (2) 0.0237 (5)
C1 0.2811 (3) 0.2379 (3) 0.8495 (2) 0.0195 (6)
H1A 0.2539 0.3246 0.9090 0.023*
C2 0.4415 (3) 0.1345 (3) 0.8433 (2) 0.0193 (6)
H2A 0.5241 0.1524 0.8968 0.023*
C3 0.4794 (3) 0.0060 (3) 0.7588 (2) 0.0168 (5)
C4 0.3576 (3) −0.0193 (3) 0.6795 (2) 0.0162 (5)
C5 0.2018 (3) 0.0867 (3) 0.6835 (2) 0.0166 (5)
H5A 0.1218 0.0719 0.6274 0.020*
C6 0.1613 (3) 0.2164 (3) 0.7706 (2) 0.0169 (5)
C7 −0.0059 (3) 0.3294 (3) 0.7743 (2) 0.0167 (5)
C8 −0.1867 (3) 0.5072 (3) 0.6792 (2) 0.0180 (6)
C9 −0.1366 (3) 0.3686 (3) 0.8796 (2) 0.0174 (5)
C10 0.7724 (3) −0.0657 (3) 0.8075 (2) 0.0233 (6)
H10A 0.8799 −0.1439 0.7821 0.035*
H10B 0.7274 −0.0762 0.9010 0.035*
H10C 0.8065 0.0488 0.7831 0.035*
C11 0.2828 (4) −0.1928 (4) 0.5250 (3) 0.0260 (6)
H11A 0.3359 −0.2877 0.4723 0.039*
H11B 0.2589 −0.0961 0.4689 0.039*
H11C 0.1675 −0.2225 0.5819 0.039*
H2N2 −0.324 (4) 0.669 (4) 0.602 (3) 0.028 (9)*
H1N2 −0.182 (4) 0.606 (4) 0.515 (3) 0.033 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02354 (18) 0.02661 (19) 0.01783 (16) 0.00291 (11) −0.00083 (11) 0.00253 (12)
S1 0.0173 (3) 0.0182 (4) 0.0182 (3) 0.0037 (3) −0.0003 (3) −0.0012 (3)
O1 0.0161 (9) 0.0188 (10) 0.0266 (9) 0.0041 (7) −0.0071 (7) −0.0039 (8)
O2 0.0207 (9) 0.0200 (10) 0.0238 (9) 0.0045 (8) −0.0060 (8) −0.0086 (8)
N1 0.0190 (11) 0.0185 (12) 0.0178 (10) 0.0028 (9) −0.0033 (9) −0.0020 (9)
N2 0.0244 (14) 0.0241 (15) 0.0187 (12) 0.0125 (11) −0.0005 (10) −0.0019 (11)
C1 0.0203 (14) 0.0167 (14) 0.0208 (12) −0.0003 (11) −0.0019 (10) −0.0048 (11)
C2 0.0187 (13) 0.0199 (15) 0.0202 (13) −0.0014 (11) −0.0057 (10) −0.0008 (11)
C3 0.0142 (13) 0.0132 (13) 0.0209 (12) 0.0013 (10) −0.0003 (10) 0.0021 (10)
C4 0.0178 (13) 0.0135 (14) 0.0152 (11) −0.0001 (10) 0.0006 (10) −0.0003 (10)
C5 0.0172 (13) 0.0173 (14) 0.0149 (11) −0.0009 (10) −0.0029 (10) 0.0007 (10)
C6 0.0188 (13) 0.0137 (13) 0.0162 (11) −0.0003 (10) −0.0001 (10) 0.0030 (10)
C7 0.0175 (13) 0.0136 (13) 0.0190 (12) −0.0011 (10) −0.0039 (10) −0.0008 (11)
C8 0.0193 (14) 0.0170 (14) 0.0171 (12) 0.0013 (11) −0.0030 (10) −0.0024 (11)
C9 0.0192 (13) 0.0136 (14) 0.0183 (12) 0.0021 (10) −0.0035 (10) 0.0017 (11)
C10 0.0140 (13) 0.0262 (16) 0.0296 (14) 0.0026 (11) −0.0050 (11) −0.0034 (12)
C11 0.0263 (15) 0.0265 (16) 0.0270 (14) 0.0004 (12) −0.0080 (12) −0.0097 (12)

Geometric parameters (Å, º)

Br1—C9 1.876 (2) C2—C3 1.382 (3)
S1—C9 1.738 (3) C2—H2A 0.9500
S1—C8 1.755 (2) C3—C4 1.402 (3)
O1—C3 1.369 (3) C4—C5 1.382 (4)
O1—C10 1.426 (3) C5—C6 1.407 (3)
O2—C4 1.372 (3) C5—H5A 0.9500
O2—C11 1.437 (3) C6—C7 1.480 (4)
N1—C8 1.312 (3) C7—C9 1.355 (3)
N1—C7 1.390 (3) C10—H10A 0.9800
N2—C8 1.340 (4) C10—H10B 0.9800
N2—H2N2 0.78 (3) C10—H10C 0.9800
N2—H1N2 0.80 (3) C11—H11A 0.9800
C1—C6 1.380 (3) C11—H11B 0.9800
C1—C2 1.395 (4) C11—H11C 0.9800
C1—H1A 0.9500
C9—S1—C8 88.28 (12) C1—C6—C7 121.1 (2)
C3—O1—C10 116.65 (19) C5—C6—C7 119.8 (2)
C4—O2—C11 117.3 (2) C9—C7—N1 114.3 (2)
C8—N1—C7 111.7 (2) C9—C7—C6 126.9 (2)
C8—N2—H2N2 120 (2) N1—C7—C6 118.7 (2)
C8—N2—H1N2 119 (2) N1—C8—N2 123.9 (2)
H2N2—N2—H1N2 116 (3) N1—C8—S1 114.24 (19)
C6—C1—C2 121.1 (2) N2—C8—S1 121.9 (2)
C6—C1—H1A 119.4 C7—C9—S1 111.44 (19)
C2—C1—H1A 119.4 C7—C9—Br1 128.9 (2)
C3—C2—C1 119.6 (2) S1—C9—Br1 119.41 (13)
C3—C2—H2A 120.2 O1—C10—H10A 109.5
C1—C2—H2A 120.2 O1—C10—H10B 109.5
O1—C3—C2 124.9 (2) H10A—C10—H10B 109.5
O1—C3—C4 115.1 (2) O1—C10—H10C 109.5
C2—C3—C4 120.0 (2) H10A—C10—H10C 109.5
O2—C4—C5 125.4 (2) H10B—C10—H10C 109.5
O2—C4—C3 114.6 (2) O2—C11—H11A 109.5
C5—C4—C3 120.1 (2) O2—C11—H11B 109.5
C4—C5—C6 120.1 (2) H11A—C11—H11B 109.5
C4—C5—H5A 119.9 O2—C11—H11C 109.5
C6—C5—H5A 119.9 H11A—C11—H11C 109.5
C1—C6—C5 119.1 (2) H11B—C11—H11C 109.5
C6—C1—C2—C3 −1.4 (4) C8—N1—C7—C9 1.5 (3)
C10—O1—C3—C2 −9.2 (3) C8—N1—C7—C6 −178.0 (2)
C10—O1—C3—C4 170.4 (2) C1—C6—C7—C9 −52.8 (4)
C1—C2—C3—O1 179.9 (2) C5—C6—C7—C9 128.5 (3)
C1—C2—C3—C4 0.3 (4) C1—C6—C7—N1 126.6 (2)
C11—O2—C4—C5 −5.5 (3) C5—C6—C7—N1 −52.1 (3)
C11—O2—C4—C3 175.2 (2) C7—N1—C8—N2 −179.6 (2)
O1—C3—C4—O2 1.3 (3) C7—N1—C8—S1 −1.3 (3)
C2—C3—C4—O2 −179.1 (2) C9—S1—C8—N1 0.6 (2)
O1—C3—C4—C5 −178.0 (2) C9—S1—C8—N2 179.0 (2)
C2—C3—C4—C5 1.6 (4) N1—C7—C9—S1 −1.0 (3)
O2—C4—C5—C6 178.4 (2) C6—C7—C9—S1 178.36 (19)
C3—C4—C5—C6 −2.4 (3) N1—C7—C9—Br1 172.86 (17)
C2—C1—C6—C5 0.6 (4) C6—C7—C9—Br1 −7.7 (4)
C2—C1—C6—C7 −178.1 (2) C8—S1—C9—C7 0.28 (19)
C4—C5—C6—C1 1.3 (3) C8—S1—C9—Br1 −174.28 (14)
C4—C5—C6—C7 −180.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N2···O1i 0.78 (3) 2.40 (3) 2.992 (3) 134 (3)
N2—H2N2···O2i 0.78 (3) 2.37 (3) 3.112 (3) 161 (3)
N2—H1N2···N1ii 0.81 (3) 2.20 (3) 2.998 (3) 168 (3)

Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5132).

References

  1. Bell, F. W., Cantrell, A. S., Högberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M. Jr, Noréen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, J., Sahlberg, C., Ternansky, R. J., Vasileff, R. T., Vrang, L., West, S. J., Zhang, H. & Zhou, X.-X. (1995). J. Med. Chem. 38, 4929–4936. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Das, J., Furch, J. A., Liu, C., Moquin, R. V., Lin, J., Spergel, S. H., Mclntyre, K. W., Shuster, D. J., O’Day, K. D., Penhallow, B., Hung, C.-Y., Doweyko, A. M., Kamath, A., Zhang, H., Marathe, P., Kanner, S. B., Lin, T.-A., Dodd, J. H., Barrish, J. C. & Wityak, J. (2006). Bioorg. Med. Chem. Lett. 16, 3706–3712. [DOI] [PubMed]
  6. Fink, B. E., Mortensen, D. S., Stauffer, S. R., Aron, Z. D. & Katzenellenbogen, J. A. (1999). Chem. Biol. 6, 205–219. [DOI] [PubMed]
  7. Hargrave, K. D., Hess, F. K. & Oliver, J. T. (1983). J. Med. Chem. 26, 1158–1163. [DOI] [PubMed]
  8. Haviv, F., Ratajczyk, J. D., DeNet, R. W., Kerdesky, F. A., Walters, R. L., Schmidt, S. P., Holms, J. H., Young, P. R. & Carter, G. W. (1988). J. Med. Chem. 31, 1719–1728. [DOI] [PubMed]
  9. Jaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzner, L. T. & Pugsley, T. A. (1990). J. Med. Chem. 33, 311–317. [DOI] [PubMed]
  10. Metzger, J. V. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, p. 238. New York: Pergamon Press.
  11. Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Conolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. J. (1992). J. Med. Chem. 35, 2562–2572. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Tsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 1601–1606.
  15. Van Muijlwijk-Koezen, J. E., Timmerman, H., Vollinga, R. C., Von Drabbe Kunzel, J. F., De Groote, M., Visser, S. & Ijzerman, A. P. (2001). J. Med. Chem. 44, 749–762. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019320/is5132sup1.cif

e-68-o1631-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019320/is5132Isup2.hkl

e-68-o1631-Isup2.hkl (104.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019320/is5132Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES