Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1635. doi: 10.1107/S1600536812019344

3,3′-[1,2-Phenyl­enebis(methyl­ene)]bis­(1-ethyl-1H-benzimidazol-1-ium) bis­(hexa­flourophosphate)

Rosenani A Haque a, Muhammad Adnan Iqbal a, Mohd Mustaqim Rosli b, Hoong-Kun Fun b,*,
PMCID: PMC3379238  PMID: 22719436

Abstract

In the title compound, C26H28N4 2+·2PF6 , the complete cation is generated by a crystallographic twofold axis. The benz­imidazole ring is almost planar (r.m.s. deviation = 0.0207 Å) and makes dihedral angles of 50.12 (2)° with its symmetry-related component and 65.81 (2)° with the central benzene ring. In the crystal, mol­ecules are linked into a three-dimensional network by C—H⋯F inter­actions. A π–π inter­action with a centroid–centroid distance of 3.530 (1) Å is observed. Four F atoms of the hexa­fluoro­phosphate anion are disordered over two sets of sites in a 0.889 (6):0.111 (6) ratio.

Related literature  

For the biological applications of benzimidazoles, see: Narasimhan et al. (2012). For a related structure, see: Haque et al. (2012).graphic file with name e-68-o1635-scheme1.jpg

Experimental  

Crystal data  

  • C26H28N4 2+·2PF6

  • M r = 686.46

  • Monoclinic, Inline graphic

  • a = 23.2016 (5) Å

  • b = 8.1526 (2) Å

  • c = 16.9992 (4) Å

  • β = 121.274 (1)°

  • V = 2748.23 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.26 × 0.26 × 0.14 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.933, T max = 0.963

  • 14787 measured reflections

  • 3921 independent reflections

  • 3156 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.098

  • S = 1.05

  • 3921 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019344/hb6760sup1.cif

e-68-o1635-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019344/hb6760Isup2.hkl

e-68-o1635-Isup2.hkl (192.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F6i 0.95 2.42 3.142 (3) 133
C3—H3A⋯F5ii 0.95 2.45 3.374 (2) 166
C5—H5A⋯F5iii 0.95 2.52 3.420 (3) 159
C6—H6A⋯F4iv 0.95 2.53 3.392 (2) 151
C8—H8B⋯F1i 0.99 2.39 3.350 (3) 164
C13—H13C⋯F1v 0.98 2.55 3.523 (2) 174
C13—H13C⋯F5v 0.98 2.50 3.166 (2) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

RAH thanks Universiti Sains Malaysia (USM) for the Research University (RU) grants (1001/PKIMIA/811157 and 304/PKIMIA/6511123). MAI is grateful to (IPS) USM for financial support [fellowship: USM·IPS/JWT/1/19 (JLD 6)] and the research attachment fund [P-KM0018/10(R) − 308/AIPS/415401]. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Benzimidazole-constituted compounds are known as bioactive heterocyclic compounds that are of wide interest for biological and clinical applications (Narasimhan et al., 2012). As a part of our ongoing studies in this area (Haque et al., 2012), we now describe the title compound.

All parameters in the title compound (Fig. 1) are within normal ranges. The complete molecule is generated by a crystallographic two-fold axis. The benzimidazole (N1—N2/C1—C7) ring is planar with the r.m.s 0.0207 Å. It makes a dihedral angle of 50.12 (2)° with its symmetrical component and 65.81 (2) Å with the central benzene ring (C9—C11/C9A—C11A). Four fluorine atoms (F1—F4) of the hexafluorophosphate cation are disordered over two positions with the final refined occupancies of 0.889 (6):0.111 (6).

In the crystal structure, (Fig. 2), the molecules are linked into a three-dimensional network through intermolecular C—H···F hydrogen bonds (Table 1). A π-π interaction with centroid-centroid distance of 3.530 (1) Å is observed (Cg1 = C2—C7).

Experimental

A mixture of benzimidazole (1.18 g, 10 mmol) and potassium hydroxide (1.18 g, 15 mmol) in 30 ml of DMSO was stirred at room temperature (27–28°C) for 30 min. Ethyl bromide (0.75 ml, 10 mmol) was added drop-wise into this consistently stirring mixture and it was further stirred for 2 h at same temperature, then poured into water (150 ml) and was extracted by chloroform (3 × 20 ml). The extract was filtered by five plies of filter papers with medium porosity to collect a crystal-clear solution which was evaporated under vacuum to get N-ethylbenzimidazole (I) as a thick yellowish fluid. Then, a mixture of I (0.73 g, 5 mmol) and 1,2- bis(bromomethyl)benzene (0.66 g, 2.5 mmol) in 1,4-dioxane (20 ml) was refluxed at 110°C for 12 h. The bromide salt of title compound appeared as beige-colored precipitates in a dark brown solution. The mixture was filtered and the precipitates were washed by fresh 1,4-dioxane (3 x 5 ml) and dried at room temperature for 24 h. The soft lumps so obtained were dissolved in methanol (30 ml) along with KPF6 (1.84 g, 10 mmol) and stirred for 3 h at room temperature. The white solid that appeared was filtered, washed by fresh methanol followed by water. The compound was dried at room temperature (1.53 g, 89.5%). A saturated solution of 2.2PF6 dissolved in acetonitrile (1 ml) was prepared. The compound was dissolved in it and the solution was evaporated at room temperature to collect colourless blocks of the title compound.

Refinement

All H atoms attached to C atoms were fixed geometrically and refined as riding with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). A rotating group model was applied to the methyl group. Four fluorine atoms (F1—F4) of the hexafluorophosphate cation are disordered over two positions with the final refined occupancies of 0.889 (6):0.111 (6).The minor component was refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

Crystal data

C26H28N42+·2PF6 F(000) = 1400
Mr = 686.46 Dx = 1.659 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3899 reflections
a = 23.2016 (5) Å θ = 2.5–29.7°
b = 8.1526 (2) Å µ = 0.27 mm1
c = 16.9992 (4) Å T = 100 K
β = 121.274 (1)° Block, colourless
V = 2748.23 (11) Å3 0.26 × 0.26 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3921 independent reflections
Radiation source: fine-focus sealed tube 3156 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
φ and ω scans θmax = 29.8°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −32→31
Tmin = 0.933, Tmax = 0.963 k = −11→9
14787 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0339P)2 + 4.2095P] where P = (Fo2 + 2Fc2)/3
3921 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.89811 (2) 0.80829 (6) 0.89390 (3) 0.01579 (11)
F5 0.84112 (5) 0.94532 (13) 0.83897 (7) 0.0220 (2)
F6 0.95467 (6) 0.67136 (15) 0.94831 (8) 0.0323 (3)
F1 0.95400 (8) 0.92423 (17) 0.89472 (17) 0.0309 (5) 0.889 (6)
F2 0.91321 (10) 0.8889 (2) 0.98909 (10) 0.0303 (5) 0.889 (6)
F3 0.84260 (11) 0.6929 (2) 0.8940 (2) 0.0311 (5) 0.889 (6)
F4 0.88302 (12) 0.7290 (2) 0.79927 (10) 0.0314 (5) 0.889 (6)
F1A 0.9350 (7) 0.9043 (15) 0.8457 (11) 0.024 (3)* 0.111 (6)
F2A 0.9323 (8) 0.9133 (18) 0.9770 (10) 0.032 (4)* 0.111 (6)
F4A 0.8573 (8) 0.7032 (18) 0.7950 (10) 0.029 (3)* 0.111 (6)
F3A 0.8547 (9) 0.713 (2) 0.9237 (11) 0.024 (4)* 0.111 (6)
N1 0.16728 (7) 0.66335 (17) 1.09095 (9) 0.0146 (3)
N2 0.10920 (7) 0.67626 (18) 0.94040 (9) 0.0154 (3)
C1 0.10867 (8) 0.7060 (2) 1.01737 (11) 0.0157 (3)
H1A 0.0717 0.7513 1.0192 0.019*
C2 0.20844 (8) 0.5997 (2) 1.06084 (11) 0.0142 (3)
C3 0.27289 (8) 0.5312 (2) 1.10913 (12) 0.0174 (3)
H3A 0.2982 0.5254 1.1744 0.021*
C4 0.29766 (9) 0.4723 (2) 1.05606 (13) 0.0206 (4)
H4A 0.3410 0.4226 1.0859 0.025*
C5 0.26085 (9) 0.4833 (2) 0.95923 (13) 0.0212 (4)
H5A 0.2802 0.4424 0.9257 0.025*
C6 0.19723 (9) 0.5525 (2) 0.91211 (12) 0.0174 (3)
H6A 0.1723 0.5610 0.8469 0.021*
C7 0.17168 (8) 0.6091 (2) 0.96517 (11) 0.0150 (3)
C8 0.05184 (8) 0.6967 (2) 0.84619 (11) 0.0163 (3)
H8A 0.0663 0.7624 0.8105 0.020*
H8B 0.0157 0.7582 0.8480 0.020*
C9 0.02370 (8) 0.5336 (2) 0.79767 (11) 0.0151 (3)
C10 0.04406 (8) 0.3851 (2) 0.84445 (12) 0.0178 (3)
H10A 0.0740 0.3845 0.9093 0.021*
C11 0.02104 (9) 0.2372 (2) 0.79734 (12) 0.0200 (4)
H11A 0.0342 0.1364 0.8301 0.024*
C12 0.18631 (9) 0.6741 (2) 1.18835 (11) 0.0186 (3)
H12A 0.2176 0.7675 1.2179 0.022*
H12B 0.2104 0.5727 1.2208 0.022*
C13 0.12542 (9) 0.6968 (2) 1.19816 (13) 0.0212 (4)
H13A 0.1402 0.7015 1.2636 0.032*
H13B 0.0944 0.6044 1.1692 0.032*
H13C 0.1024 0.7992 1.1681 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0129 (2) 0.0162 (2) 0.0174 (2) 0.00054 (16) 0.00725 (17) 0.00099 (17)
F5 0.0197 (5) 0.0208 (5) 0.0221 (5) 0.0054 (4) 0.0084 (4) 0.0053 (4)
F6 0.0233 (6) 0.0279 (6) 0.0390 (7) 0.0116 (5) 0.0115 (5) 0.0080 (5)
F1 0.0212 (8) 0.0261 (7) 0.0505 (14) −0.0047 (6) 0.0224 (9) −0.0001 (7)
F2 0.0303 (9) 0.0381 (9) 0.0169 (6) 0.0070 (7) 0.0083 (6) −0.0039 (6)
F3 0.0263 (9) 0.0207 (8) 0.0519 (15) −0.0042 (7) 0.0244 (11) 0.0045 (10)
F4 0.0382 (11) 0.0331 (9) 0.0228 (7) 0.0058 (8) 0.0157 (7) −0.0062 (6)
N1 0.0127 (6) 0.0161 (7) 0.0134 (6) 0.0006 (5) 0.0056 (5) −0.0010 (5)
N2 0.0112 (6) 0.0185 (7) 0.0137 (6) 0.0007 (5) 0.0044 (5) −0.0010 (6)
C1 0.0122 (7) 0.0179 (8) 0.0151 (7) 0.0008 (6) 0.0057 (6) −0.0011 (6)
C2 0.0126 (7) 0.0133 (7) 0.0157 (7) −0.0015 (6) 0.0067 (6) −0.0014 (6)
C3 0.0132 (8) 0.0175 (8) 0.0175 (8) 0.0002 (6) 0.0051 (7) 0.0007 (7)
C4 0.0131 (8) 0.0216 (9) 0.0238 (9) 0.0034 (7) 0.0074 (7) 0.0021 (7)
C5 0.0198 (9) 0.0219 (9) 0.0268 (9) 0.0000 (7) 0.0155 (8) −0.0023 (8)
C6 0.0168 (8) 0.0189 (8) 0.0161 (8) −0.0025 (6) 0.0082 (7) −0.0023 (7)
C7 0.0112 (7) 0.0142 (8) 0.0165 (8) −0.0017 (6) 0.0050 (6) −0.0009 (6)
C8 0.0117 (7) 0.0202 (8) 0.0114 (7) −0.0004 (6) 0.0022 (6) 0.0006 (6)
C9 0.0102 (7) 0.0201 (8) 0.0143 (8) −0.0008 (6) 0.0059 (6) −0.0009 (6)
C10 0.0117 (8) 0.0235 (9) 0.0147 (8) −0.0010 (6) 0.0045 (6) 0.0018 (7)
C11 0.0146 (8) 0.0191 (8) 0.0227 (9) 0.0014 (6) 0.0072 (7) 0.0042 (7)
C12 0.0193 (8) 0.0216 (9) 0.0121 (7) 0.0021 (7) 0.0062 (7) −0.0011 (7)
C13 0.0260 (9) 0.0195 (9) 0.0227 (9) 0.0017 (7) 0.0158 (8) 0.0017 (7)

Geometric parameters (Å, º)

P1—F2A 1.481 (14) C4—C5 1.410 (3)
P1—F3A 1.552 (19) C4—H4A 0.9500
P1—F4 1.5947 (14) C5—C6 1.382 (2)
P1—F3 1.5957 (18) C5—H5A 0.9500
P1—F1 1.5987 (13) C6—C7 1.390 (2)
P1—F6 1.6011 (12) C6—H6A 0.9500
P1—F2 1.6077 (15) C8—C9 1.522 (2)
P1—F5 1.6082 (11) C8—H8A 0.9900
P1—F1A 1.656 (11) C8—H8B 0.9900
P1—F4A 1.674 (14) C9—C10 1.390 (2)
N1—C1 1.330 (2) C9—C9i 1.409 (3)
N1—C2 1.397 (2) C10—C11 1.391 (3)
N1—C12 1.478 (2) C10—H10A 0.9500
N2—C1 1.337 (2) C11—C11i 1.383 (3)
N2—C7 1.395 (2) C11—H11A 0.9500
N2—C8 1.467 (2) C12—C13 1.518 (2)
C1—H1A 0.9500 C12—H12A 0.9900
C2—C7 1.392 (2) C12—H12B 0.9900
C2—C3 1.395 (2) C13—H13A 0.9800
C3—C4 1.383 (2) C13—H13B 0.9800
C3—H3A 0.9500 C13—H13C 0.9800
F2A—P1—F3A 95.5 (8) N1—C1—H1A 124.8
F2A—P1—F4 157.6 (7) N2—C1—H1A 124.8
F3A—P1—F4 106.7 (6) C7—C2—C3 121.92 (15)
F2A—P1—F3 111.9 (7) C7—C2—N1 106.67 (14)
F4—P1—F3 90.44 (11) C3—C2—N1 131.37 (15)
F2A—P1—F1 67.6 (7) C4—C3—C2 115.88 (16)
F3A—P1—F1 162.7 (6) C4—C3—H3A 122.1
F4—P1—F1 90.05 (9) C2—C3—H3A 122.1
F3—P1—F1 179.50 (11) C3—C4—C5 122.29 (16)
F2A—P1—F6 88.8 (6) C3—C4—H4A 118.9
F3A—P1—F6 86.5 (7) C5—C4—H4A 118.9
F4—P1—F6 89.14 (8) C6—C5—C4 121.35 (16)
F3—P1—F6 90.47 (9) C6—C5—H5A 119.3
F1—P1—F6 89.39 (7) C4—C5—H5A 119.3
F3A—P1—F2 73.4 (6) C5—C6—C7 116.48 (16)
F4—P1—F2 179.76 (10) C5—C6—H6A 121.8
F3—P1—F2 89.66 (11) C7—C6—H6A 121.8
F1—P1—F2 89.86 (9) C6—C7—C2 122.06 (15)
F6—P1—F2 91.07 (7) C6—C7—N2 131.37 (16)
F2A—P1—F5 91.4 (6) C2—C7—N2 106.53 (14)
F3A—P1—F5 93.4 (7) N2—C8—C9 112.54 (14)
F4—P1—F5 90.69 (7) N2—C8—H8A 109.1
F3—P1—F5 89.39 (9) C9—C8—H8A 109.1
F1—P1—F5 90.75 (7) N2—C8—H8B 109.1
F6—P1—F5 179.78 (9) C9—C8—H8B 109.1
F2—P1—F5 89.10 (7) H8A—C8—H8B 107.8
F2A—P1—F1A 92.3 (7) C10—C9—C9i 119.25 (10)
F3A—P1—F1A 171.2 (7) C10—C9—C8 121.89 (14)
F4—P1—F1A 65.9 (5) C9i—C9—C8 118.85 (9)
F3—P1—F1A 154.6 (5) C9—C10—C11 120.70 (15)
F6—P1—F1A 97.8 (4) C9—C10—H10A 119.6
F2—P1—F1A 114.0 (5) C11—C10—H10A 119.7
F5—P1—F1A 82.2 (4) C11i—C11—C10 119.87 (10)
F2A—P1—F4A 175.5 (8) C11i—C11—H11A 120.1
F3A—P1—F4A 86.9 (7) C10—C11—H11A 120.1
F3—P1—F4A 70.3 (5) N1—C12—C13 112.13 (14)
F1—P1—F4A 110.2 (5) N1—C12—H12A 109.2
F6—P1—F4A 95.2 (5) C13—C12—H12A 109.2
F2—P1—F4A 159.0 (6) N1—C12—H12B 109.2
F5—P1—F4A 84.6 (5) C13—C12—H12B 109.2
F1A—P1—F4A 85.1 (6) H12A—C12—H12B 107.9
C1—N1—C2 108.21 (13) C12—C13—H13A 109.5
C1—N1—C12 127.07 (14) C12—C13—H13B 109.5
C2—N1—C12 124.68 (14) H13A—C13—H13B 109.5
C1—N2—C7 108.18 (14) C12—C13—H13C 109.5
C1—N2—C8 125.72 (14) H13A—C13—H13C 109.5
C7—N2—C8 125.88 (14) H13B—C13—H13C 109.5
N1—C1—N2 110.39 (14)
C2—N1—C1—N2 −0.89 (19) N1—C2—C7—C6 −178.67 (15)
C12—N1—C1—N2 −178.83 (15) C3—C2—C7—N2 177.24 (15)
C7—N2—C1—N1 0.45 (19) N1—C2—C7—N2 −0.69 (18)
C8—N2—C1—N1 175.33 (15) C1—N2—C7—C6 177.89 (18)
C1—N1—C2—C7 0.97 (18) C8—N2—C7—C6 3.0 (3)
C12—N1—C2—C7 178.98 (15) C1—N2—C7—C2 0.18 (18)
C1—N1—C2—C3 −176.69 (18) C8—N2—C7—C2 −174.70 (15)
C12—N1—C2—C3 1.3 (3) C1—N2—C8—C9 −109.15 (18)
C7—C2—C3—C4 −0.5 (2) C7—N2—C8—C9 64.8 (2)
N1—C2—C3—C4 176.88 (17) N2—C8—C9—C10 9.8 (2)
C2—C3—C4—C5 1.2 (3) N2—C8—C9—C9i −169.32 (17)
C3—C4—C5—C6 −0.8 (3) C9i—C9—C10—C11 3.6 (3)
C4—C5—C6—C7 −0.4 (3) C8—C9—C10—C11 −175.57 (16)
C5—C6—C7—C2 1.2 (3) C9—C10—C11—C11i 1.8 (3)
C5—C6—C7—N2 −176.25 (17) C1—N1—C12—C13 15.8 (2)
C3—C2—C7—C6 −0.7 (3) C2—N1—C12—C13 −161.87 (15)

Symmetry code: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···F6ii 0.95 2.42 3.142 (3) 133
C3—H3A···F5iii 0.95 2.45 3.374 (2) 166
C5—H5A···F5iv 0.95 2.52 3.420 (3) 159
C6—H6A···F4v 0.95 2.53 3.392 (2) 151
C8—H8B···F1ii 0.99 2.39 3.350 (3) 164
C13—H13C···F1vi 0.98 2.55 3.523 (2) 174
C13—H13C···F5vi 0.98 2.50 3.166 (2) 125

Symmetry codes: (ii) x−1, y, z; (iii) x−1/2, −y+3/2, z+1/2; (iv) x−1/2, y−1/2, z; (v) −x+1, y, −z+3/2; (vi) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6760).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Haque, R. A., Iqbal, M. A., Fun, H.-K. & Arshad, S. (2012). Acta Cryst. E68, o924–o925. [DOI] [PMC free article] [PubMed]
  3. Narasimhan, B., Sharma, D. & Kumar, P. (2012). Med. Chem. Res. 21, 269–283.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019344/hb6760sup1.cif

e-68-o1635-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019344/hb6760Isup2.hkl

e-68-o1635-Isup2.hkl (192.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES