Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1640–o1641. doi: 10.1107/S1600536812019472

N′-[Bis(benzyl­sulfan­yl)methyl­idene]benzohydrazide

Shahedeh Tayamon a, Thahira Begum S A Ravoof a, Mohamed Ibrahim Mohamed Tahir a, Karen A Crouse a,, Edward R T Tiekink b,*
PMCID: PMC3379243  PMID: 22719441

Abstract

In the title hydrazonodithio­ate, C21H19N3OS2, the amide group is twisted out of the plane through the S2C=N atoms: the C—N—N—C torsion angle is 139.71 (13)°. The pyridine ring forms dihedral angles of 52.96 (8) and 86.46 (8)° with the phenyl rings, and the latter are approximately orthogonal [dihedral angle = 76.42 (9)°]. Supra­molecular chains sustained by N—H⋯O hydrogen bonds and propagated by glide symmetry along the c axis are found in the crystal structure. The chains are consolidated into a three-dimensional architecture by C—H⋯O and C—H⋯N inter­actions.

Related literature  

For background to the coordination chemistry of dithio­carbazate derivatives, see: Tarafder et al. (2002); Ravoof et al. (2010). For related syntheses, see: Ali & Tarafder (1977); Ali et al. (2001); Manan et al. (2012). For related structures, see: Jasinski et al. (2010); Singh et al. (2007).graphic file with name e-68-o1640-scheme1.jpg

Experimental  

Crystal data  

  • C21H19N3OS2

  • M r = 393.51

  • Monoclinic, Inline graphic

  • a = 11.2593 (4) Å

  • b = 21.2182 (7) Å

  • c = 8.6041 (3) Å

  • β = 103.678 (3)°

  • V = 1997.24 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.54 mm−1

  • T = 150 K

  • 0.50 × 0.36 × 0.16 mm

Data collection  

  • Agilent Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.42, T max = 0.67

  • 38338 measured reflections

  • 3867 independent reflections

  • 3715 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.097

  • S = 1.03

  • 3867 reflections

  • 247 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019472/hb6755sup1.cif

e-68-o1640-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019472/hb6755Isup2.hkl

e-68-o1640-Isup2.hkl (185.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019472/hb6755Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.864 (17) 1.936 (17) 2.7852 (15) 167.4 (16)
C7—H7⋯N3ii 0.95 2.54 3.339 (2) 142
C8—H8⋯N3iii 0.95 2.52 3.424 (2) 158
C18—H18⋯O1i 0.95 2.53 3.365 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Support for the project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS No. 9174000), the Malaysian Ministry of Science, Technology and Innovation (grant No. 09-02-04-0752-EA001) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01-13-11-986FR). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Our interest in investigating the coordination properties of ligands containing the H—N—C═S moiety (Tarafder et al., 2002; Ravoof et al., 2010) and our desire to expand the study of this class of biologically important compounds has lead us to synthesize a series of related ligands (Ali et al., 2001; Manan et al., 2012). The title compound N'-bis(benzylsulfanyl)methylidene]benzohydrazide, (I), was obtained from an attempt to prepare S-benzyl isonicotinoylcarbonohydrazonodithioate (see Experimental).

In (I), Fig. 1, the amide is twisted out of the plane through the S2C═N atoms with the C1—N1—N2—C16 torsion angle being 139.71 (13)°. A similar twist was found in the structure of (PhCH2S)2C═ NN(H)C(═ O)C6H4OMe-4 (Jasinski et al., 2010) but a planar arrangement was observed in the structure of (PhCH2S)2C═NN(H)C(═O)C6H4OMe-2 (Singh et al., 2007). The dihedral angle between the phenyl rings is 76.42 (9)°, indicating an almost orthogonal relationship. Each of these rings forms a dihedral angle of 52.96 (8) and 86.46 (8)° with the pyridyl ring.

The crystal packing features supramolecular chains sustained by N—H···O hydrogen bonds, Table 1, and propagated by glide symmetry along the c axis, Fig. 2. Chains are consolidated into a three-dimensional architecture by C—H···O and C—H···N interactions, Fig. 3 and Table 1.

Experimental

The procedure to synthesize S-benzyldithiocarbazate (Ali & Tarafder, 1977) was adapted to prepare S-benzyl isonicotinoylcarbonohydrazono dithioate by replacing hydrazine with its isonicotinic acid derivative. Potassium hydroxide (0.2 mol, 11.2 g) in absolute ethanol (70 ml) was added to a suspension of isonicotinic acid hydrazide (0.2 mol, 27.43 g) in absolute ethanol (700 ml). The pale-yellow solution was kept in an ice-salt bath and carbon disulfide (0.2 mol) was added drop-wise with constant stirring over one hour. Benzylchloride (0.2 mol, 23 ml) was then added drop-wise with vigorous stirring to the pale-orange solution obtained above. The reaction temperature was maintained below 278 K. An unidentified pale-yellow solid (33.84 g) which did not contain any benzyl substituent was filtered from the mixture. The filtrate was kept in a freezer for one week before it was used as replacement for absolute ethanol to repeat the above reaction. The final solution produced dark-yellow blocks of the title compound after storage at 268 K for 5 months. (Yield 16 g; M.pt: 369 K).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Uequiv(C). The amino H-atom was refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular chain in (I) mediated by N—H···O hydrogen bonding, shown as blue dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents for (I). The N—H···O, C—H···O and C—H···N interactions are shown as blue orange and brown dashed lines, respectively.

Crystal data

C21H19N3OS2 F(000) = 824
Mr = 393.51 Dx = 1.309 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 17900 reflections
a = 11.2593 (4) Å θ = 4–71°
b = 21.2182 (7) Å µ = 2.54 mm1
c = 8.6041 (3) Å T = 150 K
β = 103.678 (3)° Block, dark yellow
V = 1997.24 (12) Å3 0.50 × 0.36 × 0.16 mm
Z = 4

Data collection

Agilent Xcaliber Eos Gemini diffractometer 3867 independent reflections
Radiation source: fine-focus sealed tube 3715 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 16.1952 pixels mm-1 θmax = 71.4°, θmin = 4.0°
ω/2θ scans h = −13→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −24→26
Tmin = 0.42, Tmax = 0.67 l = −10→10
38338 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.6548P] where P = (Fo2 + 2Fc2)/3
3867 reflections (Δ/σ)max = 0.001
247 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.58342 (3) 0.395419 (15) 0.24637 (4) 0.02644 (11)
S2 0.37808 (3) 0.403747 (16) 0.41378 (4) 0.03091 (12)
O1 0.55367 (12) 0.19229 (5) 0.45894 (12) 0.0423 (3)
N1 0.45622 (11) 0.29676 (5) 0.32219 (13) 0.0266 (2)
N2 0.53822 (10) 0.26152 (5) 0.25652 (13) 0.0246 (2)
H2N 0.5455 (15) 0.2700 (8) 0.161 (2) 0.030*
N3 0.82288 (13) 0.08675 (8) 0.1580 (2) 0.0510 (4)
C1 0.47186 (11) 0.35652 (7) 0.32465 (14) 0.0240 (3)
C2 0.58359 (14) 0.47567 (7) 0.32153 (18) 0.0316 (3)
H2A 0.5016 0.4948 0.2845 0.038*
H2B 0.6056 0.4758 0.4399 0.038*
C3 0.67684 (13) 0.51237 (7) 0.25762 (17) 0.0288 (3)
C4 0.64021 (15) 0.55501 (9) 0.1339 (2) 0.0423 (4)
H4 0.5556 0.5605 0.0867 0.051*
C5 0.72615 (19) 0.58997 (10) 0.0779 (2) 0.0525 (5)
H5 0.7001 0.6193 −0.0068 0.063*
C6 0.84883 (17) 0.58206 (9) 0.1453 (2) 0.0465 (4)
H6 0.9076 0.6057 0.1069 0.056*
C7 0.88623 (15) 0.53955 (8) 0.2688 (2) 0.0421 (4)
H7 0.9709 0.5341 0.3155 0.051*
C8 0.80055 (14) 0.50489 (7) 0.32481 (19) 0.0351 (3)
H8 0.8269 0.4758 0.4099 0.042*
C9 0.27606 (13) 0.34592 (7) 0.47123 (17) 0.0297 (3)
H9A 0.3219 0.3063 0.5034 0.036*
H9B 0.2487 0.3620 0.5651 0.036*
C10 0.16574 (13) 0.33186 (7) 0.33872 (17) 0.0308 (3)
C11 0.15710 (15) 0.27626 (9) 0.2525 (2) 0.0469 (4)
H11 0.2216 0.2463 0.2766 0.056*
C12 0.05412 (18) 0.26418 (11) 0.1306 (3) 0.0620 (6)
H12 0.0489 0.2261 0.0712 0.074*
C13 −0.04034 (18) 0.30698 (12) 0.0955 (2) 0.0582 (5)
H13 −0.1102 0.2986 0.0116 0.070*
C14 −0.03337 (18) 0.36186 (10) 0.1820 (2) 0.0555 (5)
H14 −0.0989 0.3912 0.1591 0.067*
C15 0.06947 (16) 0.37429 (8) 0.3028 (2) 0.0441 (4)
H15 0.0741 0.4124 0.3618 0.053*
C16 0.57822 (13) 0.20778 (6) 0.33232 (15) 0.0262 (3)
C17 0.66171 (12) 0.16710 (7) 0.26297 (16) 0.0277 (3)
C18 0.72075 (14) 0.18668 (8) 0.14762 (18) 0.0352 (3)
H18 0.7077 0.2277 0.1026 0.042*
C19 0.79978 (15) 0.14459 (10) 0.0994 (2) 0.0475 (4)
H19 0.8397 0.1581 0.0195 0.057*
C20 0.76652 (16) 0.06886 (9) 0.2706 (2) 0.0489 (4)
H20 0.7824 0.0278 0.3144 0.059*
C21 0.68633 (15) 0.10680 (7) 0.3272 (2) 0.0381 (4)
H21 0.6487 0.0921 0.4082 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02696 (19) 0.02388 (19) 0.03094 (19) −0.00467 (12) 0.01177 (14) −0.00630 (12)
S2 0.0295 (2) 0.02387 (19) 0.0439 (2) −0.00234 (12) 0.01763 (16) −0.00832 (13)
O1 0.0760 (9) 0.0293 (6) 0.0282 (5) 0.0116 (5) 0.0256 (5) 0.0044 (4)
N1 0.0300 (6) 0.0239 (6) 0.0292 (6) 0.0011 (4) 0.0134 (5) −0.0024 (4)
N2 0.0309 (6) 0.0230 (6) 0.0232 (5) 0.0012 (4) 0.0129 (4) −0.0005 (4)
N3 0.0308 (7) 0.0560 (10) 0.0626 (10) 0.0119 (7) 0.0037 (7) −0.0243 (8)
C1 0.0233 (6) 0.0253 (7) 0.0238 (6) −0.0008 (5) 0.0067 (5) −0.0035 (5)
C2 0.0332 (7) 0.0232 (7) 0.0420 (8) −0.0061 (5) 0.0159 (6) −0.0090 (6)
C3 0.0312 (7) 0.0242 (7) 0.0328 (7) −0.0057 (5) 0.0115 (6) −0.0065 (5)
C4 0.0343 (8) 0.0482 (10) 0.0408 (8) −0.0068 (7) 0.0017 (6) 0.0066 (7)
C5 0.0559 (11) 0.0585 (12) 0.0407 (9) −0.0109 (9) 0.0067 (8) 0.0181 (8)
C6 0.0450 (9) 0.0502 (10) 0.0493 (9) −0.0164 (8) 0.0213 (8) 0.0037 (8)
C7 0.0292 (8) 0.0413 (9) 0.0567 (10) −0.0062 (7) 0.0123 (7) 0.0017 (7)
C8 0.0325 (8) 0.0301 (8) 0.0432 (8) −0.0020 (6) 0.0096 (6) 0.0034 (6)
C9 0.0297 (7) 0.0292 (7) 0.0340 (7) −0.0023 (5) 0.0153 (6) −0.0026 (6)
C10 0.0312 (7) 0.0316 (7) 0.0339 (7) −0.0053 (6) 0.0166 (6) −0.0028 (6)
C11 0.0328 (8) 0.0466 (10) 0.0657 (11) −0.0076 (7) 0.0207 (8) −0.0230 (9)
C12 0.0445 (10) 0.0750 (14) 0.0714 (13) −0.0194 (10) 0.0237 (9) −0.0421 (11)
C13 0.0388 (10) 0.0868 (15) 0.0471 (10) −0.0165 (10) 0.0069 (8) −0.0133 (10)
C14 0.0430 (10) 0.0600 (12) 0.0576 (11) 0.0036 (9) 0.0004 (8) 0.0024 (9)
C15 0.0433 (9) 0.0379 (9) 0.0487 (9) 0.0024 (7) 0.0058 (7) −0.0035 (7)
C16 0.0341 (7) 0.0230 (7) 0.0217 (6) −0.0012 (5) 0.0071 (5) −0.0037 (5)
C17 0.0261 (7) 0.0296 (7) 0.0246 (6) 0.0005 (5) 0.0006 (5) −0.0084 (5)
C18 0.0296 (7) 0.0448 (9) 0.0314 (7) 0.0052 (6) 0.0073 (6) −0.0037 (6)
C19 0.0301 (8) 0.0687 (12) 0.0451 (9) 0.0065 (8) 0.0116 (7) −0.0148 (9)
C20 0.0382 (9) 0.0370 (9) 0.0662 (11) 0.0098 (7) 0.0018 (8) −0.0138 (8)
C21 0.0374 (8) 0.0283 (8) 0.0465 (9) 0.0024 (6) 0.0059 (7) −0.0062 (6)

Geometric parameters (Å, º)

S1—C1 1.7643 (13) C8—H8 0.9500
S1—C2 1.8213 (14) C9—C10 1.504 (2)
S2—C1 1.7579 (13) C9—H9A 0.9900
S2—C9 1.8270 (14) C9—H9B 0.9900
O1—C16 1.2304 (17) C10—C11 1.385 (2)
N1—C1 1.2795 (18) C10—C15 1.387 (2)
N1—N2 1.4063 (15) C11—C12 1.391 (3)
N2—C16 1.3376 (18) C11—H11 0.9500
N2—H2N 0.867 (18) C12—C13 1.377 (3)
N3—C20 1.333 (3) C12—H12 0.9500
N3—C19 1.329 (3) C13—C14 1.374 (3)
C2—C3 1.5113 (19) C13—H13 0.9500
C2—H2A 0.9900 C14—C15 1.386 (3)
C2—H2B 0.9900 C14—H14 0.9500
C3—C8 1.385 (2) C15—H15 0.9500
C3—C4 1.384 (2) C16—C17 1.5001 (18)
C4—C5 1.392 (2) C17—C18 1.383 (2)
C4—H4 0.9500 C17—C21 1.395 (2)
C5—C6 1.376 (3) C18—C19 1.391 (2)
C5—H5 0.9500 C18—H18 0.9500
C6—C7 1.382 (3) C19—H19 0.9500
C6—H6 0.9500 C20—C21 1.381 (2)
C7—C8 1.387 (2) C20—H20 0.9500
C7—H7 0.9500 C21—H21 0.9500
C1—S1—C2 104.06 (6) S2—C9—H9B 109.0
C1—S2—C9 102.48 (7) H9A—C9—H9B 107.8
C1—N1—N2 115.64 (11) C11—C10—C15 118.79 (15)
C16—N2—N1 115.76 (11) C11—C10—C9 121.06 (14)
C16—N2—H2N 123.0 (12) C15—C10—C9 120.14 (14)
N1—N2—H2N 119.4 (11) C10—C11—C12 120.09 (18)
C20—N3—C19 117.05 (15) C10—C11—H11 120.0
N1—C1—S2 118.53 (10) C12—C11—H11 120.0
N1—C1—S1 124.39 (10) C13—C12—C11 120.47 (18)
S2—C1—S1 117.07 (8) C13—C12—H12 119.8
C3—C2—S1 107.16 (9) C11—C12—H12 119.8
C3—C2—H2A 110.3 C12—C13—C14 119.84 (18)
S1—C2—H2A 110.3 C12—C13—H13 120.1
C3—C2—H2B 110.3 C14—C13—H13 120.1
S1—C2—H2B 110.3 C13—C14—C15 119.87 (19)
H2A—C2—H2B 108.5 C13—C14—H14 120.1
C8—C3—C4 118.91 (14) C15—C14—H14 120.1
C8—C3—C2 120.38 (13) C14—C15—C10 120.92 (17)
C4—C3—C2 120.69 (13) C14—C15—H15 119.5
C3—C4—C5 120.62 (16) C10—C15—H15 119.5
C3—C4—H4 119.7 O1—C16—N2 122.64 (13)
C5—C4—H4 119.7 O1—C16—C17 119.44 (12)
C6—C5—C4 119.99 (16) N2—C16—C17 117.84 (12)
C6—C5—H5 120.0 C18—C17—C21 118.39 (14)
C4—C5—H5 120.0 C18—C17—C16 124.44 (13)
C5—C6—C7 119.77 (15) C21—C17—C16 117.05 (13)
C5—C6—H6 120.1 C17—C18—C19 118.11 (16)
C7—C6—H6 120.1 C17—C18—H18 120.9
C6—C7—C8 120.20 (16) C19—C18—H18 120.9
C6—C7—H7 119.9 N3—C19—C18 124.13 (17)
C8—C7—H7 119.9 N3—C19—H19 117.9
C3—C8—C7 120.51 (15) C18—C19—H19 117.9
C3—C8—H8 119.7 N3—C20—C21 123.60 (18)
C7—C8—H8 119.7 N3—C20—H20 118.2
C10—C9—S2 112.79 (10) C21—C20—H20 118.2
C10—C9—H9A 109.0 C20—C21—C17 118.70 (17)
S2—C9—H9A 109.0 C20—C21—H21 120.7
C10—C9—H9B 109.0 C17—C21—H21 120.6
C1—N1—N2—C16 139.71 (13) C9—C10—C11—C12 179.87 (16)
N2—N1—C1—S2 −176.89 (9) C10—C11—C12—C13 −0.5 (3)
N2—N1—C1—S1 2.25 (17) C11—C12—C13—C14 −0.5 (3)
C9—S2—C1—N1 −2.38 (12) C12—C13—C14—C15 0.9 (3)
C9—S2—C1—S1 178.42 (7) C13—C14—C15—C10 −0.4 (3)
C2—S1—C1—N1 −168.24 (12) C11—C10—C15—C14 −0.6 (3)
C2—S1—C1—S2 10.91 (9) C9—C10—C15—C14 −179.43 (16)
C1—S1—C2—C3 −179.46 (10) N1—N2—C16—O1 −5.9 (2)
S1—C2—C3—C8 −76.56 (15) N1—N2—C16—C17 177.46 (11)
S1—C2—C3—C4 105.00 (15) O1—C16—C17—C18 −162.44 (15)
C8—C3—C4—C5 −0.1 (3) N2—C16—C17—C18 14.3 (2)
C2—C3—C4—C5 178.34 (16) O1—C16—C17—C21 13.6 (2)
C3—C4—C5—C6 0.3 (3) N2—C16—C17—C21 −169.68 (13)
C4—C5—C6—C7 −0.3 (3) C21—C17—C18—C19 1.3 (2)
C5—C6—C7—C8 0.1 (3) C16—C17—C18—C19 177.25 (13)
C4—C3—C8—C7 −0.1 (2) C20—N3—C19—C18 −0.4 (3)
C2—C3—C8—C7 −178.54 (14) C17—C18—C19—N3 −0.5 (2)
C6—C7—C8—C3 0.1 (3) C19—N3—C20—C21 0.4 (3)
C1—S2—C9—C10 −86.57 (11) N3—C20—C21—C17 0.4 (3)
S2—C9—C10—C11 104.40 (15) C18—C17—C21—C20 −1.3 (2)
S2—C9—C10—C15 −76.77 (16) C16—C17—C21—C20 −177.54 (14)
C15—C10—C11—C12 1.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O1i 0.864 (17) 1.936 (17) 2.7852 (15) 167.4 (16)
C7—H7···N3ii 0.95 2.54 3.339 (2) 142
C8—H8···N3iii 0.95 2.52 3.424 (2) 158
C18—H18···O1i 0.95 2.53 3.365 (2) 147

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6755).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2001). Inorg. Chim. Acta, 320, 1–6.
  3. Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785–1791.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Jasinski, J. P., Butcher, R. J., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). Acta Cryst. E66, o1899. [DOI] [PMC free article] [PubMed]
  7. Manan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr 42, 173–179.
  8. Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkin, D. J. (2010). Transition Met. Chem 35, 871–876.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Singh, N. K., Singh, M. & Butcher, R. J. (2007). Acta Cryst. E63, o4405.
  11. Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019472/hb6755sup1.cif

e-68-o1640-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019472/hb6755Isup2.hkl

e-68-o1640-Isup2.hkl (185.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019472/hb6755Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES