Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1646. doi: 10.1107/S1600536812018776

6-Benz­yloxy-2-phenyl­pyridazin-3(2H)-one

Zhi-Yu Ju a, Gong-Chun Li a, Chao Li b, Jie Wang b, Feng-Ling Yang a,*
PMCID: PMC3379247  PMID: 22719445

Abstract

In the title compound, C17H14N2O2, the central pyridazine ring forms dihedral angles of 47.29 (5) and 88.54 (5)° with the benzene rings, while the dihedral angle between the benzene rings is 62.68 (6)°. In the crystal, molecules are linked by two weak C—H⋯O hydrogen bonds and three weak C—H⋯π inter­actions.

Related literature  

For applications of pyridazinone analogues as highly selective anti-HIV agents, see: Loksha et al. (2007), as pesticides, see: Li et al. (2005) and as herbicides, see: Xu et al. (2006). For a related structure, see: Ju et al. (2011).graphic file with name e-68-o1646-scheme1.jpg

Experimental  

Crystal data  

  • C17H14N2O2

  • M r = 278.30

  • Triclinic, Inline graphic

  • a = 7.390 (4) Å

  • b = 9.385 (5) Å

  • c = 10.587 (6) Å

  • α = 106.618 (7)°

  • β = 97.489 (6)°

  • γ = 101.098 (9)°

  • V = 676.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.14 mm

Data collection  

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.982, T max = 0.987

  • 7083 measured reflections

  • 3167 independent reflections

  • 2103 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.070

  • S = 1.02

  • 3167 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018776/bg2457sup1.cif

e-68-o1646-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018776/bg2457Isup2.hkl

e-68-o1646-Isup2.hkl (155.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018776/bg2457Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.54 3.389 (2) 149
C15—H15⋯O1ii 0.95 2.44 3.235 (2) 141
C4—H4⋯Cg2iii 0.95 2.76 3.494 (2) 135
C9—H9⋯Cg2iv 0.95 2.95 3.752 (2) 143
C13—H13⋯Cg1v 0.95 2.63 3.456 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant Nos. 20972143 and 20972130), the Natural Science Foundation of Henan Province Education Committee, China (No. 2010 A150021) and the Natural Science Foundation of Xuchang University (grant No. 2012064).

supplementary crystallographic information

Comment

Pyridazinones represent an important class of biologically active compounds. Recently, a substantial number of pyridazinones have been reported to possess highly-selective anti-HIV agents (Loksha et al., 2007), pesticide(Li et al., 2005), highly herbicidal activity (Xu et al., 2006). In order to discover further biologically active Pyridazinone analogues, the title compound, (I), was synthesized, and its crystal structure determined (Fig. 1).

As a continuation of our studies on the crystal structures of Pyridazinone analogues (Ju et al., 2011), we report here the synthesis and crystal structure, an ellipsoid plot of which is shown in Fig. 1. The central pyridazine ring forms dihedral angles of 47.29 (5)° and 88.54 (5)° with the two benzene rings, while the dihedral angle between the two benzene rings is 62.68 (6)°. The structure is stabilized by two weak C—H···O and three C—H···Cg intermolecular hydrogen bonds (Cg's: centroids of the benzene rings) (Table 1).

Experimental

3-hydroxyl-1phenyl-6-pyridazone(0.94 g, 5 mmol), benzyl chloride(0.63 g, 5 mmol) and K2CO3 (0.69 g, 5 mmol) were added to absolute ethanol(30 ml). The mixture was stirred in the room temperature for 10 h. The suspension was filtered and the residue was washed with absolute ethanol. The title compound was recrystallized from the mother solution and single crystals of (I) were obtained by slow evaporation.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.95 Å and C—H = 0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C17H14N2O2 Z = 2
Mr = 278.30 F(000) = 292
Triclinic, P1 Dx = 1.365 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.390 (4) Å Cell parameters from 2420 reflections
b = 9.385 (5) Å θ = 2.0–27.9°
c = 10.587 (6) Å µ = 0.09 mm1
α = 106.618 (7)° T = 113 K
β = 97.489 (6)° Prism, colorless
γ = 101.098 (9)° 0.20 × 0.18 × 0.14 mm
V = 676.9 (6) Å3

Data collection

Rigaku Saturn CCD area-detector diffractometer 3167 independent reflections
Radiation source: rotating anode 2103 reflections with I > 2σ(I)
Multilayer monochromator Rint = 0.037
Detector resolution: 14.63 pixels mm-1 θmax = 27.9°, θmin = 2.1°
ω and φ scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −12→12
Tmin = 0.982, Tmax = 0.987 l = −13→13
7083 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.014P)2] where P = (Fo2 + 2Fc2)/3
3167 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.42844 (11) 0.94745 (8) 0.63170 (7) 0.0233 (2)
O2 0.77932 (11) 0.49972 (8) 0.63235 (8) 0.0216 (2)
N1 0.48299 (13) 0.75278 (10) 0.71052 (9) 0.0164 (2)
N2 0.57426 (13) 0.63946 (10) 0.71641 (9) 0.0175 (2)
C1 0.36869 (16) 0.78488 (12) 0.81087 (11) 0.0167 (3)
C2 0.18835 (17) 0.79994 (12) 0.77449 (12) 0.0201 (3)
H2 0.1387 0.7879 0.6836 0.024*
C3 0.08053 (17) 0.83289 (12) 0.87255 (12) 0.0220 (3)
H3 −0.0429 0.8447 0.8488 0.026*
C4 0.15216 (17) 0.84853 (12) 1.00468 (12) 0.0226 (3)
H4 0.0780 0.8708 1.0713 0.027*
C5 0.33193 (17) 0.83158 (12) 1.03932 (12) 0.0216 (3)
H5 0.3805 0.8414 1.1298 0.026*
C6 0.44193 (17) 0.80031 (12) 0.94267 (11) 0.0194 (3)
H6 0.5658 0.7896 0.9667 0.023*
C7 0.50525 (16) 0.84005 (12) 0.62487 (11) 0.0175 (3)
C8 0.62325 (15) 0.79457 (12) 0.52976 (11) 0.0187 (3)
H8 0.6404 0.8461 0.4653 0.022*
C9 0.70914 (16) 0.68125 (12) 0.53036 (11) 0.0190 (3)
H9 0.7855 0.6509 0.4669 0.023*
C10 0.68183 (16) 0.60737 (12) 0.63011 (11) 0.0172 (3)
C11 0.76814 (17) 0.43746 (13) 0.74356 (11) 0.0219 (3)
H11A 0.6432 0.3673 0.7289 0.026*
H11B 0.7866 0.5214 0.8293 0.026*
C12 0.91981 (16) 0.35233 (12) 0.74890 (11) 0.0178 (3)
C13 1.09241 (17) 0.42585 (13) 0.83407 (11) 0.0218 (3)
H13 1.1142 0.5302 0.8874 0.026*
C14 1.23333 (17) 0.34891 (13) 0.84226 (11) 0.0230 (3)
H14 1.3512 0.4006 0.9008 0.028*
C15 1.20271 (17) 0.19639 (13) 0.76516 (11) 0.0217 (3)
H15 1.2986 0.1428 0.7712 0.026*
C16 1.03045 (17) 0.12308 (13) 0.67916 (11) 0.0217 (3)
H16 1.0090 0.0189 0.6255 0.026*
C17 0.89004 (17) 0.19985 (12) 0.67083 (11) 0.0206 (3)
H17 0.7727 0.1484 0.6116 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0327 (5) 0.0207 (5) 0.0235 (5) 0.0139 (4) 0.0090 (4) 0.0113 (4)
O2 0.0276 (5) 0.0237 (5) 0.0227 (5) 0.0151 (4) 0.0099 (4) 0.0134 (4)
N1 0.0187 (6) 0.0172 (5) 0.0177 (5) 0.0093 (4) 0.0052 (5) 0.0083 (4)
N2 0.0189 (6) 0.0168 (5) 0.0198 (5) 0.0085 (4) 0.0041 (5) 0.0074 (4)
C1 0.0200 (7) 0.0130 (6) 0.0188 (7) 0.0044 (5) 0.0066 (5) 0.0062 (5)
C2 0.0241 (7) 0.0176 (6) 0.0199 (7) 0.0065 (5) 0.0040 (6) 0.0075 (5)
C3 0.0196 (7) 0.0181 (6) 0.0314 (8) 0.0078 (5) 0.0071 (6) 0.0096 (5)
C4 0.0290 (8) 0.0176 (7) 0.0243 (7) 0.0080 (6) 0.0129 (6) 0.0067 (5)
C5 0.0271 (8) 0.0199 (7) 0.0169 (7) 0.0034 (6) 0.0043 (6) 0.0061 (5)
C6 0.0202 (7) 0.0180 (6) 0.0209 (7) 0.0050 (5) 0.0038 (6) 0.0077 (5)
C7 0.0201 (7) 0.0170 (6) 0.0158 (6) 0.0044 (5) 0.0016 (5) 0.0067 (5)
C8 0.0224 (7) 0.0195 (6) 0.0165 (6) 0.0056 (5) 0.0052 (6) 0.0081 (5)
C9 0.0201 (7) 0.0215 (7) 0.0163 (7) 0.0053 (5) 0.0056 (5) 0.0062 (5)
C10 0.0185 (7) 0.0164 (6) 0.0170 (6) 0.0067 (5) 0.0012 (5) 0.0051 (5)
C11 0.0255 (8) 0.0243 (7) 0.0223 (7) 0.0104 (6) 0.0078 (6) 0.0132 (5)
C12 0.0210 (7) 0.0199 (6) 0.0185 (7) 0.0098 (5) 0.0081 (6) 0.0102 (5)
C13 0.0270 (8) 0.0166 (6) 0.0238 (7) 0.0074 (6) 0.0066 (6) 0.0074 (5)
C14 0.0194 (7) 0.0240 (7) 0.0257 (7) 0.0058 (6) 0.0014 (6) 0.0090 (6)
C15 0.0249 (7) 0.0259 (7) 0.0229 (7) 0.0151 (6) 0.0095 (6) 0.0128 (6)
C16 0.0322 (8) 0.0167 (6) 0.0186 (7) 0.0101 (6) 0.0071 (6) 0.0056 (5)
C17 0.0219 (7) 0.0216 (7) 0.0187 (7) 0.0052 (5) 0.0020 (5) 0.0080 (5)

Geometric parameters (Å, º)

O1—C7 1.2379 (14) C8—C9 1.3405 (15)
O2—C10 1.3526 (14) C8—H8 0.9500
O2—C11 1.4611 (14) C9—C10 1.4343 (16)
N1—N2 1.3758 (13) C9—H9 0.9500
N1—C7 1.3899 (14) C11—C12 1.5006 (16)
N1—C1 1.4429 (14) C11—H11A 0.9900
N2—C10 1.2967 (14) C11—H11B 0.9900
C1—C2 1.3836 (17) C12—C13 1.3862 (16)
C1—C6 1.3850 (17) C12—C17 1.3907 (16)
C2—C3 1.3911 (16) C13—C14 1.3839 (16)
C2—H2 0.9500 C13—H13 0.9500
C3—C4 1.3851 (17) C14—C15 1.3875 (17)
C3—H3 0.9500 C14—H14 0.9500
C4—C5 1.3829 (17) C15—C16 1.3875 (16)
C4—H4 0.9500 C15—H15 0.9500
C5—C6 1.3896 (16) C16—C17 1.3799 (16)
C5—H5 0.9500 C16—H16 0.9500
C6—H6 0.9500 C17—H17 0.9500
C7—C8 1.4432 (16)
C10—O2—C11 115.71 (9) C8—C9—H9 121.1
N2—N1—C7 125.17 (10) C10—C9—H9 121.1
N2—N1—C1 113.91 (9) N2—C10—O2 119.85 (10)
C7—N1—C1 120.75 (10) N2—C10—C9 124.22 (12)
C10—N2—N1 116.73 (10) O2—C10—C9 115.93 (11)
C2—C1—C6 120.99 (11) O2—C11—C12 107.55 (9)
C2—C1—N1 119.79 (11) O2—C11—H11A 110.2
C6—C1—N1 119.22 (11) C12—C11—H11A 110.2
C1—C2—C3 119.21 (11) O2—C11—H11B 110.2
C1—C2—H2 120.4 C12—C11—H11B 110.2
C3—C2—H2 120.4 H11A—C11—H11B 108.5
C4—C3—C2 120.34 (12) C13—C12—C17 119.09 (12)
C4—C3—H3 119.8 C13—C12—C11 119.69 (11)
C2—C3—H3 119.8 C17—C12—C11 121.21 (11)
C5—C4—C3 119.82 (11) C14—C13—C12 120.71 (11)
C5—C4—H4 120.1 C14—C13—H13 119.6
C3—C4—H4 120.1 C12—C13—H13 119.6
C4—C5—C6 120.45 (12) C13—C14—C15 120.09 (12)
C4—C5—H5 119.8 C13—C14—H14 120.0
C6—C5—H5 119.8 C15—C14—H14 120.0
C1—C6—C5 119.19 (12) C14—C15—C16 119.22 (12)
C1—C6—H6 120.4 C14—C15—H15 120.4
C5—C6—H6 120.4 C16—C15—H15 120.4
O1—C7—N1 121.54 (11) C17—C16—C15 120.69 (12)
O1—C7—C8 123.94 (10) C17—C16—H16 119.7
N1—C7—C8 114.53 (11) C15—C16—H16 119.7
C9—C8—C7 121.43 (11) C16—C17—C12 120.20 (12)
C9—C8—H8 119.3 C16—C17—H17 119.9
C7—C8—H8 119.3 C12—C17—H17 119.9
C8—C9—C10 117.73 (11)
C7—N1—N2—C10 −3.67 (15) N1—C7—C8—C9 −2.77 (16)
C1—N1—N2—C10 −178.83 (9) C7—C8—C9—C10 −0.74 (16)
N2—N1—C1—C2 −134.36 (10) N1—N2—C10—O2 178.41 (9)
C7—N1—C1—C2 50.24 (14) N1—N2—C10—C9 −0.47 (16)
N2—N1—C1—C6 45.70 (13) C11—O2—C10—N2 −5.75 (15)
C7—N1—C1—C6 −129.70 (12) C11—O2—C10—C9 173.22 (9)
C6—C1—C2—C3 0.78 (16) C8—C9—C10—N2 2.57 (17)
N1—C1—C2—C3 −179.16 (9) C8—C9—C10—O2 −176.35 (9)
C1—C2—C3—C4 −0.80 (16) C10—O2—C11—C12 −166.04 (9)
C2—C3—C4—C5 0.13 (16) O2—C11—C12—C13 94.70 (12)
C3—C4—C5—C6 0.58 (16) O2—C11—C12—C17 −86.01 (13)
C2—C1—C6—C5 −0.09 (16) C17—C12—C13—C14 −0.35 (17)
N1—C1—C6—C5 179.85 (9) C11—C12—C13—C14 178.96 (10)
C4—C5—C6—C1 −0.60 (16) C12—C13—C14—C15 −0.22 (18)
N2—N1—C7—O1 −174.84 (10) C13—C14—C15—C16 0.68 (17)
C1—N1—C7—O1 0.01 (17) C14—C15—C16—C17 −0.59 (17)
N2—N1—C7—C8 5.19 (16) C15—C16—C17—C12 0.02 (17)
C1—N1—C7—C8 −179.96 (9) C13—C12—C17—C16 0.44 (17)
O1—C7—C8—C9 177.26 (11) C11—C12—C17—C16 −178.85 (10)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C8—H8···O1i 0.95 2.54 3.389 (2) 149
C15—H15···O1ii 0.95 2.44 3.235 (2) 141
C4—H4···Cg2iii 0.95 2.76 3.494 (2) 135
C9—H9···Cg2iv 0.95 2.95 3.752 (2) 143
C13—H13···Cg1v 0.95 2.63 3.456 (2) 145

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y−1, z; (iii) −x+1, −y+1, −z+2; (iv) −x+2, −y+1, −z+1; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2457).

References

  1. Ju, Z.-Y., Jiang, W.-X. & Yang, F.-L. (2011). Acta Cryst. E67, o1042. [DOI] [PMC free article] [PubMed]
  2. Li, H. S., Ling, Y., Guo, Y. L., Yang, X. L. & Chen, F. H. (2005). Chin. J. Org. Chem. 25, 204–207.
  3. Loksha, Y. M., Pedersen, E. B., Colla, P. L. & Loddo, R. (2007). J. Heterocycl. Chem. 44, 1351–1356.
  4. Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Xu, H., Zou, X. M. & Yang, H. Z. (2006). Pest Manag. Sci. 62, 522–530. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018776/bg2457sup1.cif

e-68-o1646-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018776/bg2457Isup2.hkl

e-68-o1646-Isup2.hkl (155.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018776/bg2457Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES