Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1655–o1656. doi: 10.1107/S1600536812019356

(E)-N′-(4-Eth­oxy­benzyl­idene)-4-hy­droxy­benzohydrazide dihydrate

Hoong-Kun Fun a,*,, Jirapa Horkaew b, Suchada Chantrapromma b,§, Chatchanok Karalai b
PMCID: PMC3379254  PMID: 22719452

Abstract

The benzohydrazide mol­ecule of the title compound, C16H16N2O3·2H2O, exists in a trans conformation with respect to the C=N double bond. The central O=C—NH—N=C plane [r.m.s. deviation of 0.0165 (1) Å for the five non-H atoms] makes dihedral angles of 6.04 (8) and 2.38 (8)°, respectively, with the hy­droxy- and eth­oxy-substituted benzene rings. The dihedral angle between these benzene rings is 3.82 (7)°. The eth­oxy group is almost coplanar with the attached benzene ring with a C—O—C—C torsion angle of −176.58 (11)°. In the crystal, the benzohydrazide and water mol­ecules are linked by N—H⋯O, O—H⋯O , O—H⋯N and C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature  

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2011); Horkaew et al. (2011, 2012). For applications of benzohydrazides, see: Loncle et al. (2004); Molyneux (2004); Promdet et al. (2011); Raj et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1655-scheme1.jpg

Experimental  

Crystal data  

  • C16H16N2O3·2H2O

  • M r = 320.34

  • Monoclinic, Inline graphic

  • a = 7.1655 (1) Å

  • b = 17.3895 (3) Å

  • c = 13.6202 (2) Å

  • β = 110.875 (1)°

  • V = 1585.74 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.29 × 0.16 × 0.16 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.971, T max = 0.984

  • 22228 measured reflections

  • 5737 independent reflections

  • 4310 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.155

  • S = 1.03

  • 5737 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019356/is5130sup1.cif

e-68-o1655-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019356/is5130Isup2.hkl

e-68-o1655-Isup2.hkl (280.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019356/is5130Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1i 0.84 1.77 2.6106 (15) 174
N1—H2⋯O1Wii 0.85 2.10 2.9278 (16) 167
O1W—H3⋯O2iii 0.81 2.06 2.8683 (15) 177
O1W—H4⋯O2W 0.88 1.84 2.7159 (19) 169
O2W—H5⋯O1iv 0.87 2.14 2.8558 (18) 139
O2W—H5⋯N2iv 0.87 2.55 3.3363 (19) 151
O2W—H6⋯O3v 0.89 2.11 2.9791 (17) 165
C6—H6A⋯O1Wii 0.95 2.36 3.2942 (18) 169
C8—H8A⋯O1Wii 0.95 2.49 3.3222 (18) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

JH thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors thank Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

It has been known that a majority of benzohydrazides possesses various biological properties, such as antibacterial and antifungal (Loncle et al., 2004), and antiproliferative (Raj et al., 2007) activities. The title benzohydrazide derivative (I) was synthesized as part of our study on the bioactivity of benzohydrazide derivatives (Fun et al., 2011; Horkaew et al., 2011, 2012; Promdet et al., 2011) and was evaluated for antioxidant activity by DPPH scavenging (Molyneux, 2004). It was found to be active. Herein we report the synthesis and crystal structure of (I).

The title compound (Fig. 1), C16H16N2O3.2H2O, comprises one benzohydrazide molecule and two water molecules. The molecule of benzohydrazide exists in a trans-configuration with respect to the C8═N2 bond and the torsion angle N1—N2—C8—C9 = -179.90 (11)° with the dihedral angle between the two benzene rings being 3.82 (7)°. The middle fragment are planar with an r.m.s. deviation of 0.0165 (1) Å for the five non-H atoms (O1, C7, N1, N2 and C8). The mean plane through this middle fragment makes the dihedral angles of 6.04 (8) and 2.38 (8)° with the 4-hydroxyphenyl and 4-ethoxyphenyl rings, respectively. The ethoxy group is co-planar with the bound benzene ring with the torsion angle C12—O3—C15—C16 = -176.58 (11)°. The molecule is therefore approximately planar. The two water molecules are linked to each other by an O—H···O hydrogen bond (Fig. 1). Bond distances of benzohydrazide are of normal values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Horkaew et al., 2011, 2012).

In the crystal packing (Fig. 2), the molecules of benzohydrazide and water are linked by N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds (Table 1) into a three-dimensional network.

Experimental

The title compound (I) was prepared by dissolving 4-hydroxybenzohydrazide (2 mmol, 0.30 g) in ethanol (15 ml). A solution of 4-ethoxybenzaldehyde (2 mmol, 0.27 ml) in ethanol (15 ml) was then added slowly to the reaction. The mixture was refluxed for around 6 hr. The solution was then cooled to room temperature and a white solid appeared. Colorless block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from a methanol solution by slow evaporation of the solvent at room temperature after several days (m.p. 373-374 K).

Refinement

All H atoms were positioned geometrically [d(O—H) = 0.84 Å for the hydroxy group and 0.81–0.89 Å for water molecules, d(N—H) = 0.85 Å, d(C—H) = 0.95 Å for aromatic and CH, 0.99 Å for CH2 and 0.98 Å for CH3 groups] and allowed to ride on their parent atoms, The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 60% probability displacement ellipsoids and the atom-numbering scheme. The O—H···O hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H16N2O3·2H2O F(000) = 680
Mr = 320.34 Dx = 1.342 Mg m3
Monoclinic, P21/c Melting point = 373–374 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.1655 (1) Å Cell parameters from 5737 reflections
b = 17.3895 (3) Å θ = 2.0–32.5°
c = 13.6202 (2) Å µ = 0.10 mm1
β = 110.875 (1)° T = 100 K
V = 1585.74 (4) Å3 Block, colorless
Z = 4 0.29 × 0.16 × 0.16 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 5737 independent reflections
Radiation source: sealed tube 4310 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 32.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.971, Tmax = 0.984 k = −26→19
22228 measured reflections l = −20→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.7894P] where P = (Fo2 + 2Fc2)/3
5737 reflections (Δ/σ)max = 0.001
209 parameters Δρmax = 0.73 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.75546 (15) 0.81977 (6) 0.40609 (8) 0.0174 (2)
O2 0.60182 (15) 0.81464 (6) −0.08291 (8) 0.0188 (2)
H1 0.6435 0.7704 −0.0894 0.028*
O3 0.85596 (15) 1.15548 (6) 0.90045 (8) 0.0198 (2)
N1 0.70782 (16) 0.94655 (7) 0.37373 (9) 0.0146 (2)
H2 0.6729 0.9842 0.3315 0.018*
N2 0.75068 (16) 0.96088 (7) 0.47938 (9) 0.0151 (2)
C1 0.67580 (17) 0.86049 (7) 0.22842 (10) 0.0130 (2)
C2 0.67471 (19) 0.78444 (8) 0.19463 (11) 0.0156 (2)
H2A 0.6925 0.7437 0.2436 0.019*
C3 0.64817 (19) 0.76747 (8) 0.09099 (11) 0.0162 (2)
H3A 0.6461 0.7155 0.0690 0.019*
C4 0.62471 (18) 0.82718 (8) 0.01968 (10) 0.0145 (2)
C5 0.62192 (19) 0.90311 (8) 0.05149 (11) 0.0163 (2)
H5A 0.6018 0.9436 0.0020 0.020*
C6 0.64847 (19) 0.91980 (8) 0.15534 (11) 0.0156 (2)
H6A 0.6481 0.9718 0.1768 0.019*
C7 0.71456 (17) 0.87382 (7) 0.34201 (10) 0.0127 (2)
C8 0.73020 (19) 1.03161 (8) 0.50069 (11) 0.0162 (2)
H8A 0.6885 1.0676 0.4446 0.019*
C9 0.76804 (19) 1.05918 (8) 0.60712 (11) 0.0155 (2)
C10 0.8108 (2) 1.01088 (8) 0.69423 (11) 0.0200 (3)
H10A 0.8197 0.9569 0.6858 0.024*
C11 0.8404 (2) 1.04100 (8) 0.79300 (11) 0.0201 (3)
H11A 0.8681 1.0077 0.8517 0.024*
C12 0.82933 (18) 1.12032 (8) 0.80608 (11) 0.0166 (2)
C13 0.7880 (2) 1.16903 (8) 0.72028 (11) 0.0186 (3)
H13A 0.7809 1.2230 0.7291 0.022*
C14 0.7570 (2) 1.13863 (8) 0.62170 (11) 0.0189 (3)
H14A 0.7279 1.1721 0.5631 0.023*
C15 0.9043 (2) 1.10800 (9) 0.99250 (11) 0.0196 (3)
H15A 1.0348 1.0825 1.0066 0.024*
H15B 0.8012 1.0678 0.9820 0.024*
C16 0.9131 (2) 1.15890 (9) 1.08336 (11) 0.0207 (3)
H16A 0.9521 1.1283 1.1479 0.031*
H16B 0.7815 1.1818 1.0702 0.031*
H16C 1.0116 1.1998 1.0912 0.031*
O1W 0.36756 (19) 0.59100 (6) 0.24443 (9) 0.0301 (3)
H3 0.4370 0.6177 0.2921 0.045*
H4 0.2664 0.6197 0.2059 0.045*
O2W 0.0731 (2) 0.67607 (8) 0.10548 (11) 0.0471 (4)
H5 −0.0331 0.6558 0.0590 0.071*
H6 0.0705 0.7267 0.0963 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0255 (5) 0.0134 (5) 0.0125 (4) −0.0004 (3) 0.0059 (4) 0.0019 (4)
O2 0.0281 (5) 0.0179 (5) 0.0100 (4) 0.0064 (4) 0.0062 (4) −0.0004 (4)
O3 0.0277 (5) 0.0181 (5) 0.0126 (5) 0.0025 (4) 0.0059 (4) −0.0014 (4)
N1 0.0212 (5) 0.0134 (5) 0.0086 (5) 0.0002 (4) 0.0047 (4) 0.0005 (4)
N2 0.0184 (5) 0.0170 (5) 0.0097 (5) −0.0007 (4) 0.0044 (4) −0.0015 (4)
C1 0.0142 (5) 0.0133 (6) 0.0111 (5) 0.0001 (4) 0.0041 (4) −0.0003 (4)
C2 0.0220 (6) 0.0125 (6) 0.0129 (6) 0.0000 (4) 0.0067 (5) 0.0008 (5)
C3 0.0223 (6) 0.0132 (6) 0.0132 (6) 0.0008 (4) 0.0063 (5) −0.0010 (5)
C4 0.0159 (5) 0.0165 (6) 0.0103 (6) 0.0025 (4) 0.0037 (4) 0.0000 (4)
C5 0.0227 (6) 0.0142 (6) 0.0123 (6) 0.0039 (4) 0.0067 (5) 0.0025 (5)
C6 0.0211 (5) 0.0129 (6) 0.0134 (6) 0.0024 (4) 0.0070 (5) 0.0012 (5)
C7 0.0137 (5) 0.0139 (6) 0.0105 (5) −0.0006 (4) 0.0042 (4) 0.0000 (4)
C8 0.0203 (5) 0.0161 (6) 0.0125 (6) −0.0015 (4) 0.0061 (5) −0.0004 (5)
C9 0.0173 (5) 0.0176 (6) 0.0117 (6) −0.0005 (4) 0.0052 (4) −0.0018 (5)
C10 0.0275 (6) 0.0163 (6) 0.0162 (7) 0.0028 (5) 0.0078 (5) 0.0004 (5)
C11 0.0274 (6) 0.0175 (6) 0.0140 (6) 0.0030 (5) 0.0055 (5) 0.0020 (5)
C12 0.0166 (5) 0.0184 (6) 0.0139 (6) −0.0005 (4) 0.0043 (5) −0.0032 (5)
C13 0.0246 (6) 0.0145 (6) 0.0168 (7) 0.0002 (5) 0.0075 (5) −0.0005 (5)
C14 0.0247 (6) 0.0154 (6) 0.0169 (6) −0.0012 (5) 0.0080 (5) −0.0005 (5)
C15 0.0236 (6) 0.0212 (7) 0.0144 (6) 0.0014 (5) 0.0073 (5) 0.0014 (5)
C16 0.0235 (6) 0.0247 (7) 0.0137 (6) −0.0009 (5) 0.0066 (5) −0.0027 (5)
O1W 0.0463 (7) 0.0148 (5) 0.0187 (6) 0.0027 (5) −0.0014 (5) −0.0031 (4)
O2W 0.0469 (8) 0.0341 (8) 0.0342 (8) 0.0181 (6) −0.0176 (6) −0.0151 (6)

Geometric parameters (Å, º)

O1—C7 1.2445 (16) C8—H8A 0.9500
O2—C4 1.3651 (16) C9—C10 1.3957 (19)
O2—H1 0.8415 C9—C14 1.402 (2)
O3—C12 1.3738 (16) C10—C11 1.388 (2)
O3—C15 1.4368 (17) C10—H10A 0.9500
N1—C7 1.3428 (17) C11—C12 1.397 (2)
N1—N2 1.3828 (15) C11—H11A 0.9500
N1—H2 0.8479 C12—C13 1.387 (2)
N2—C8 1.2841 (18) C13—C14 1.385 (2)
C1—C6 1.3977 (18) C13—H13A 0.9500
C1—C2 1.3994 (18) C14—H14A 0.9500
C1—C7 1.4894 (18) C15—C16 1.504 (2)
C2—C3 1.3872 (19) C15—H15A 0.9900
C2—H2A 0.9500 C15—H15B 0.9900
C3—C4 1.3906 (19) C16—H16A 0.9800
C3—H3A 0.9500 C16—H16B 0.9800
C4—C5 1.3920 (19) C16—H16C 0.9800
C5—C6 1.3890 (19) O1W—H3 0.8092
C5—H5A 0.9500 O1W—H4 0.8829
C6—H6A 0.9500 O2W—H5 0.8715
C8—C9 1.4575 (18) O2W—H6 0.8889
C4—O2—H1 109.6 C10—C9—C8 123.66 (13)
C12—O3—C15 118.06 (11) C14—C9—C8 117.71 (12)
C7—N1—N2 118.98 (11) C11—C10—C9 120.55 (13)
C7—N1—H2 123.0 C11—C10—H10A 119.7
N2—N1—H2 117.9 C9—C10—H10A 119.7
C8—N2—N1 114.02 (12) C10—C11—C12 120.03 (13)
C6—C1—C2 118.69 (12) C10—C11—H11A 120.0
C6—C1—C7 123.50 (12) C12—C11—H11A 120.0
C2—C1—C7 117.77 (11) O3—C12—C13 115.67 (12)
C3—C2—C1 121.23 (12) O3—C12—C11 124.31 (13)
C3—C2—H2A 119.4 C13—C12—C11 120.02 (13)
C1—C2—H2A 119.4 C14—C13—C12 119.73 (13)
C2—C3—C4 119.37 (12) C14—C13—H13A 120.1
C2—C3—H3A 120.3 C12—C13—H13A 120.1
C4—C3—H3A 120.3 C13—C14—C9 121.04 (13)
O2—C4—C3 122.42 (12) C13—C14—H14A 119.5
O2—C4—C5 117.41 (12) C9—C14—H14A 119.5
C3—C4—C5 120.16 (12) O3—C15—C16 107.82 (12)
C6—C5—C4 120.21 (12) O3—C15—H15A 110.1
C6—C5—H5A 119.9 C16—C15—H15A 110.1
C4—C5—H5A 119.9 O3—C15—H15B 110.1
C5—C6—C1 120.31 (12) C16—C15—H15B 110.1
C5—C6—H6A 119.8 H15A—C15—H15B 108.5
C1—C6—H6A 119.8 C15—C16—H16A 109.5
O1—C7—N1 120.81 (12) C15—C16—H16B 109.5
O1—C7—C1 121.40 (12) H16A—C16—H16B 109.5
N1—C7—C1 117.78 (11) C15—C16—H16C 109.5
N2—C8—C9 122.96 (13) H16A—C16—H16C 109.5
N2—C8—H8A 118.5 H16B—C16—H16C 109.5
C9—C8—H8A 118.5 H3—O1W—H4 106.9
C10—C9—C14 118.62 (12) H5—O2W—H6 109.2
C7—N1—N2—C8 −176.66 (11) N1—N2—C8—C9 −179.90 (11)
C6—C1—C2—C3 0.32 (18) N2—C8—C9—C10 −6.5 (2)
C7—C1—C2—C3 −177.23 (11) N2—C8—C9—C14 174.70 (12)
C1—C2—C3—C4 0.81 (19) C14—C9—C10—C11 0.4 (2)
C2—C3—C4—O2 178.72 (11) C8—C9—C10—C11 −178.38 (12)
C2—C3—C4—C5 −1.92 (19) C9—C10—C11—C12 −0.6 (2)
O2—C4—C5—C6 −178.70 (11) C15—O3—C12—C13 −178.41 (11)
C3—C4—C5—C6 1.91 (19) C15—O3—C12—C11 1.97 (18)
C4—C5—C6—C1 −0.77 (19) C10—C11—C12—O3 179.87 (12)
C2—C1—C6—C5 −0.34 (18) C10—C11—C12—C13 0.3 (2)
C7—C1—C6—C5 177.06 (11) O3—C12—C13—C14 −179.40 (12)
N2—N1—C7—O1 1.17 (17) C11—C12—C13—C14 0.2 (2)
N2—N1—C7—C1 −177.57 (10) C12—C13—C14—C9 −0.4 (2)
C6—C1—C7—O1 −173.58 (12) C10—C9—C14—C13 0.1 (2)
C2—C1—C7—O1 3.85 (17) C8—C9—C14—C13 178.96 (12)
C6—C1—C7—N1 5.15 (17) C12—O3—C15—C16 −176.58 (11)
C2—C1—C7—N1 −177.43 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H1···O1i 0.84 1.77 2.6106 (15) 174
N1—H2···O1Wii 0.85 2.10 2.9278 (16) 167
O1W—H3···O2iii 0.81 2.06 2.8683 (15) 177
O1W—H4···O2W 0.88 1.84 2.7159 (19) 169
O2W—H5···O1iv 0.87 2.14 2.8558 (18) 139
O2W—H5···N2iv 0.87 2.55 3.3363 (19) 151
O2W—H6···O3v 0.89 2.11 2.9791 (17) 165
C6—H6A···O1Wii 0.95 2.36 3.2942 (18) 169
C8—H8A···O1Wii 0.95 2.49 3.3222 (18) 146

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) x−1, −y+3/2, z−1/2; (v) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5130).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645. [DOI] [PMC free article] [PubMed]
  5. Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070. [DOI] [PMC free article] [PubMed]
  6. Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985. [DOI] [PMC free article] [PubMed]
  7. Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071. [DOI] [PubMed]
  8. Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211–219.
  9. Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224. [DOI] [PMC free article] [PubMed]
  10. Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019356/is5130sup1.cif

e-68-o1655-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019356/is5130Isup2.hkl

e-68-o1655-Isup2.hkl (280.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019356/is5130Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES