Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1657. doi: 10.1107/S1600536812019757

(5,7-Dimethyl-2-oxo-2H-chromen-4-yl)methyl diethyl­dithio­carbamate

K Mahesh Kumar a, H C Devarajegowda b,*, S Jeyaseelan b, N M Mahabaleshwaraiah a, O Kotresh a
PMCID: PMC3379255  PMID: 22719453

Abstract

In the title compound, C17H21NO2S2, the coumarin ring system is nearly planar, with a maximum deviation of 0.080 (2) Å from the mean plane. An intra­molecular C—H⋯S hydrogen bond occurs. The crystal structure features C—H⋯S hydrogen bonds and weak π–π inter­actions with a centroid–centroid distance of 3.679 (1) Å.

Related literature  

For biological applications of coumarins and dithio­carbamates, see: Smith et al. (1998); Nawrot-Modraka et al. (2006); Basanagouda et al. (2009); Kalkhambkar et al. (2007); El-Shorbagi (2000); Ronconi et al. (2006); Cvek & Dvorak (2007). For a related structure, see: Kumar et al. (2012). For the synthesis of the title compound, see: Shastri et al. (2004).graphic file with name e-68-o1657-scheme1.jpg

Experimental  

Crystal data  

  • C17H21NO2S2

  • M r = 335.47

  • Monoclinic, Inline graphic

  • a = 7.8570 (2) Å

  • b = 23.7745 (5) Å

  • c = 9.7684 (2) Å

  • β = 109.483 (1)°

  • V = 1720.22 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.12 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007) T min = 0.770, T max = 1.000

  • 14939 measured reflections

  • 3033 independent reflections

  • 2803 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.135

  • S = 1.04

  • 3033 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019757/wn2474sup1.cif

e-68-o1657-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019757/wn2474Isup2.hkl

e-68-o1657-Isup2.hkl (145.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019757/wn2474Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯S2i 0.93 2.86 3.751 (2) 161
C16—H16C⋯S1 0.96 2.53 3.282 (3) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data. KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

supplementary crystallographic information

Comment

Coumarins constitute a class of compounds which are found widely in nature and possess diverse biological activities. Over recent decades, medicinal chemists have paid great attention to the isolation, screening and structural modifications of new coumarins. They have been found to exhibit a wide range of applications in cancer, the HIV drug development arena (Smith et al., 1998), anti-tumor, anti-bacterial and cytotoxic activity (Nawrot-Modraka et al., 2006). In 4-substituted coumarins, the groups attached at the C-4 methylene carbon been shown to influence their solid state conformations, as observed in 4-aryloxymethyl (Basanagouda et al., 2009) and 4-arylaminomethyl coumarins (Kalkhambkar et al., 2007).

Dithiocarbamates have shown wide applications as pesticides,fungicides in agriculture (El-Shorbagi, 2000), potent anticancer agents (Ronconi et al., 2006), organic intermediates, rubber additives, additives of polluted water and vulcanizing agents (Cvek & Dvorak, 2007).

In view of the above observations,we proposed that 4-substituted coumarins bearing the dithiocarbamate (DTC)group should display some interesting biological activity and the title compound was screened for fungicidal, bacterial and DNA cleavage properties.The crystal structure of a coumarin derivative linked to the DTC group has been reported (Kumar et al., 2012).

The title compound is one of a series of dithiocarbamate coumarins with potential as possible anti-microbial agents. For these reasons, in continuation of our interest in the crystal structures of coumarin derivatives, we report here its crystal structure.

The asymmetric unit of 5,7-dimethyl-2-oxo-2H-chromen-4-yl)methyl diethyldithiocarbamate is shown in Fig. 1.The coumarin ring system (O3/C6–C14) is nearly planar, with a maximum deviation from the mean plane of 0.080 (2) Å for atom C12.

In the crystal structure (Fig. 2), the molecules are connected via weak intramolecular C8—H8···S2 and intermolecular C16—H16C···S1 hydrogen bonds (Table 1). Furthermore, the crystal structure features π-π stacking interactions between the pyran ring (O3/C10–C14; centroid Cg1) and the benzene ring (C6–C11; centroid Cg2), with a Cg1···Cg2 distance of 3.679 (1) Å.

Experimental

All the chemicals were of analytical reagent grade and were used directly without further purification. 4-Bromomethyl coumarin required for the synthesis of the target molecule was synthesized according to an already reported procedure involving Pechmann cyclization of phenols with 4-bromoethyl acetoacetate (Shastri et al., 2004) and sodium diethyldithiocarbamate purchased from Sigma- Aldrich.

A mixture of 2.6 g (0.01 mol) of 5,7-dimethyl-4-bromomethylcoumarin and 1.71 g (0.01 mol) of sodium diethyldithiocarbamate in 30 ml dry alcohol was stirred for 24 h at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the resulting solid was extracted twice with a dichloromethane-H2O mixture. The organic layer was dried over anhydrous CaCl2 and evaporation of the organic solvent gave the title compound. The compound was recrystallized from an ethanol-chloroform mixture. Colour: Colourless. Yield: 91%. M.P.: 409 K.

Refinement

All H atoms were positioned geometrically [Csp2—H = 0.93 Å, C(methylene)—H = 0.97 Å and C(methyl)—H = 0.96 Å] and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed line indicates the intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

The packing of the molecules in the crystal structure.

Crystal data

C17H21NO2S2 F(000) = 712
Mr = 335.47 Dx = 1.295 Mg m3
Monoclinic, P21/n Melting point: 409 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 7.8570 (2) Å Cell parameters from 3033 reflections
b = 23.7745 (5) Å θ = 1.7–25.0°
c = 9.7684 (2) Å µ = 0.32 mm1
β = 109.483 (1)° T = 293 K
V = 1720.22 (7) Å3 Plate, colourless
Z = 4 0.24 × 0.20 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3033 independent reflections
Radiation source: fine-focus sealed tube 2803 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω and φ scans θmax = 25.0°, θmin = 1.7°
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) h = −9→9
Tmin = 0.770, Tmax = 1.000 k = −26→28
14939 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0643P)2 + 1.5942P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.003
3033 reflections Δρmax = 0.90 e Å3
204 parameters Δρmin = −0.73 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0052 (14)

Special details

Experimental. IR (KBr) 670 c m-1 (C—S), 1204 c m-1 (C=S), 1047 c m-1 (C—O), 823 c m-1 (C—N),1279 c m-1 (C—O—C), 1716 c m-1 (C=O).GCMS data m/e = 335. 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 1.58 (d Ethylene-6H, CH3), 2.46 (s,3H, CH3), 2.71 (s,3H, CH3), 3.88 (s,2H, Ethylene-CH2), 4.21 (s,2H, Ethylene-CH2), 4.50 (s 2H, Methylene-CH2), 6.53 (s,1H, Ar—H), 6.92 (s,1H, Ar—H), 7.03 (s,1H, Ar—H).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15831 (9) 0.15127 (3) 0.66095 (6) 0.0434 (2)
S2 0.25909 (15) 0.14818 (4) 0.38884 (10) 0.0773 (3)
O3 0.77521 (19) 0.04484 (8) 0.88072 (17) 0.0414 (4)
O4 0.8065 (3) 0.01657 (10) 0.6765 (2) 0.0610 (6)
N5 0.1516 (4) 0.23806 (10) 0.4975 (3) 0.0583 (6)
C6 0.7641 (3) 0.06546 (11) 1.1089 (2) 0.0395 (5)
H6 0.8887 0.0606 1.1437 0.047*
C7 0.6727 (3) 0.07803 (10) 1.2025 (2) 0.0401 (5)
C8 0.4863 (3) 0.08315 (10) 1.1453 (2) 0.0378 (5)
H8 0.4236 0.0902 1.2091 0.045*
C9 0.3886 (3) 0.07847 (9) 0.9997 (2) 0.0329 (5)
C10 0.4826 (3) 0.06808 (9) 0.9000 (2) 0.0294 (5)
C11 0.6692 (3) 0.06000 (9) 0.9621 (2) 0.0327 (5)
C12 0.4095 (3) 0.06440 (9) 0.7418 (2) 0.0312 (5)
C13 0.5170 (3) 0.04836 (10) 0.6673 (2) 0.0380 (5)
H13 0.4675 0.0459 0.5668 0.046*
C14 0.7056 (3) 0.03479 (11) 0.7350 (3) 0.0405 (5)
C15 0.7704 (4) 0.08551 (15) 1.3626 (3) 0.0628 (8)
H15A 0.7936 0.0493 1.4088 0.094*
H15B 0.6971 0.1074 1.4042 0.094*
H15C 0.8827 0.1046 1.3770 0.094*
C16 0.1861 (3) 0.08263 (12) 0.9590 (3) 0.0465 (6)
H16A 0.1543 0.0847 1.0456 0.070*
H16B 0.1310 0.0500 0.9041 0.070*
H16C 0.1442 0.1158 0.9016 0.070*
C17 0.2169 (3) 0.07796 (10) 0.6516 (2) 0.0369 (5)
H17A 0.1363 0.0548 0.6844 0.044*
H17B 0.1982 0.0683 0.5512 0.044*
C18 0.1913 (4) 0.18349 (11) 0.5078 (3) 0.0480 (6)
C19 0.1622 (6) 0.27172 (15) 0.3738 (4) 0.0795 (11)
H19A 0.1363 0.2478 0.2887 0.095*
H19B 0.0718 0.3012 0.3524 0.095*
C20 0.0865 (5) 0.26865 (13) 0.6014 (4) 0.0666 (9)
H20A 0.1272 0.3074 0.6075 0.080*
H20B 0.1384 0.2519 0.6968 0.080*
C21 −0.1163 (5) 0.26762 (16) 0.5582 (4) 0.0793 (10)
H21A −0.1682 0.2849 0.4647 0.119*
H21B −0.1529 0.2879 0.6286 0.119*
H21C −0.1570 0.2294 0.5538 0.119*
C22 0.3417 (7) 0.29714 (19) 0.4049 (7) 0.1145 (17)
H22A 0.3700 0.3194 0.4917 0.172*
H22B 0.3420 0.3206 0.3251 0.172*
H22C 0.4303 0.2680 0.4184 0.172*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0513 (4) 0.0436 (4) 0.0340 (3) 0.0154 (3) 0.0127 (3) 0.0011 (2)
S2 0.1254 (8) 0.0562 (5) 0.0777 (6) 0.0240 (5) 0.0703 (6) 0.0081 (4)
O3 0.0260 (8) 0.0627 (11) 0.0369 (9) 0.0014 (7) 0.0124 (6) 0.0009 (8)
O4 0.0491 (11) 0.0906 (16) 0.0508 (11) 0.0181 (10) 0.0267 (9) −0.0012 (10)
N5 0.0738 (16) 0.0432 (13) 0.0683 (16) 0.0112 (11) 0.0373 (13) 0.0056 (11)
C6 0.0270 (11) 0.0512 (14) 0.0360 (12) −0.0054 (10) 0.0046 (9) 0.0016 (10)
C7 0.0441 (13) 0.0425 (13) 0.0300 (11) −0.0084 (10) 0.0074 (10) −0.0005 (9)
C8 0.0424 (13) 0.0403 (13) 0.0351 (12) −0.0017 (10) 0.0188 (10) −0.0017 (9)
C9 0.0311 (11) 0.0325 (11) 0.0361 (12) 0.0004 (9) 0.0126 (9) 0.0013 (9)
C10 0.0270 (10) 0.0287 (10) 0.0318 (11) −0.0028 (8) 0.0090 (9) 0.0004 (8)
C11 0.0279 (11) 0.0383 (12) 0.0331 (11) −0.0031 (9) 0.0117 (9) 0.0024 (9)
C12 0.0303 (11) 0.0283 (10) 0.0320 (11) −0.0002 (8) 0.0065 (9) 0.0002 (8)
C13 0.0389 (12) 0.0439 (13) 0.0294 (11) 0.0050 (10) 0.0091 (9) 0.0002 (9)
C14 0.0389 (12) 0.0498 (14) 0.0366 (12) 0.0040 (11) 0.0177 (10) 0.0036 (10)
C15 0.0609 (18) 0.087 (2) 0.0334 (14) −0.0135 (16) 0.0061 (12) −0.0067 (14)
C16 0.0348 (13) 0.0618 (16) 0.0475 (14) 0.0073 (11) 0.0199 (11) 0.0059 (12)
C17 0.0332 (12) 0.0381 (12) 0.0338 (12) 0.0033 (9) 0.0035 (9) −0.0026 (9)
C18 0.0528 (15) 0.0451 (14) 0.0500 (15) 0.0078 (11) 0.0224 (12) 0.0020 (11)
C19 0.104 (3) 0.0531 (18) 0.101 (3) 0.0124 (18) 0.060 (2) 0.0154 (18)
C20 0.097 (2) 0.0421 (15) 0.069 (2) 0.0145 (15) 0.0382 (18) −0.0025 (14)
C21 0.094 (3) 0.072 (2) 0.086 (2) 0.0324 (19) 0.049 (2) 0.0158 (19)
C22 0.132 (4) 0.079 (3) 0.165 (5) −0.026 (3) 0.093 (4) −0.017 (3)

Geometric parameters (Å, º)

S1—C18 1.775 (3) C13—C14 1.443 (3)
S1—C17 1.813 (2) C13—H13 0.9300
S2—C18 1.659 (3) C15—H15A 0.9600
O3—C14 1.365 (3) C15—H15B 0.9600
O3—C11 1.377 (3) C15—H15C 0.9600
O4—C14 1.202 (3) C16—H16A 0.9600
N5—C18 1.330 (4) C16—H16B 0.9600
N5—C20 1.472 (4) C16—H16C 0.9600
N5—C19 1.474 (4) C17—H17A 0.9700
C6—C7 1.371 (3) C17—H17B 0.9700
C6—C11 1.384 (3) C19—C22 1.469 (6)
C6—H6 0.9300 C19—H19A 0.9700
C7—C8 1.388 (3) C19—H19B 0.9700
C7—C15 1.505 (3) C20—C21 1.506 (5)
C8—C9 1.377 (3) C20—H20A 0.9700
C8—H8 0.9300 C20—H20B 0.9700
C9—C10 1.426 (3) C21—H21A 0.9600
C9—C16 1.510 (3) C21—H21B 0.9600
C10—C11 1.400 (3) C21—H21C 0.9600
C10—C12 1.461 (3) C22—H22A 0.9600
C12—C13 1.341 (3) C22—H22B 0.9600
C12—C17 1.510 (3) C22—H22C 0.9600
C18—S1—C17 105.17 (12) C9—C16—H16B 109.5
C14—O3—C11 122.57 (17) H16A—C16—H16B 109.5
C18—N5—C20 123.8 (2) C9—C16—H16C 109.5
C18—N5—C19 121.0 (2) H16A—C16—H16C 109.5
C20—N5—C19 115.1 (2) H16B—C16—H16C 109.5
C7—C6—C11 119.4 (2) C12—C17—S1 113.43 (15)
C7—C6—H6 120.3 C12—C17—H17A 108.9
C11—C6—H6 120.3 S1—C17—H17A 108.9
C6—C7—C8 117.8 (2) C12—C17—H17B 108.9
C6—C7—C15 121.3 (2) S1—C17—H17B 108.9
C8—C7—C15 120.8 (2) H17A—C17—H17B 107.7
C9—C8—C7 124.0 (2) N5—C18—S2 124.2 (2)
C9—C8—H8 118.0 N5—C18—S1 112.87 (19)
C7—C8—H8 118.0 S2—C18—S1 122.90 (16)
C8—C9—C10 118.8 (2) C22—C19—N5 111.5 (4)
C8—C9—C16 116.2 (2) C22—C19—H19A 109.3
C10—C9—C16 124.9 (2) N5—C19—H19A 109.3
C11—C10—C9 115.73 (19) C22—C19—H19B 109.3
C11—C10—C12 115.79 (19) N5—C19—H19B 109.3
C9—C10—C12 128.48 (19) H19A—C19—H19B 108.0
O3—C11—C6 113.68 (19) N5—C20—C21 112.2 (3)
O3—C11—C10 122.26 (19) N5—C20—H20A 109.2
C6—C11—C10 124.0 (2) C21—C20—H20A 109.2
C13—C12—C10 119.62 (19) N5—C20—H20B 109.2
C13—C12—C17 115.74 (19) C21—C20—H20B 109.2
C10—C12—C17 124.64 (19) H20A—C20—H20B 107.9
C12—C13—C14 123.5 (2) C20—C21—H21A 109.5
C12—C13—H13 118.3 C20—C21—H21B 109.5
C14—C13—H13 118.3 H21A—C21—H21B 109.5
O4—C14—O3 117.4 (2) C20—C21—H21C 109.5
O4—C14—C13 127.0 (2) H21A—C21—H21C 109.5
O3—C14—C13 115.58 (19) H21B—C21—H21C 109.5
C7—C15—H15A 109.5 C19—C22—H22A 109.5
C7—C15—H15B 109.5 C19—C22—H22B 109.5
H15A—C15—H15B 109.5 H22A—C22—H22B 109.5
C7—C15—H15C 109.5 C19—C22—H22C 109.5
H15A—C15—H15C 109.5 H22A—C22—H22C 109.5
H15B—C15—H15C 109.5 H22B—C22—H22C 109.5
C9—C16—H16A 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···S2i 0.93 2.86 3.751 (2) 161
C16—H16C···S1 0.96 2.53 3.282 (3) 135

Symmetry code: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2474).

References

  1. Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cvek, B. & Dvorak, Z. T. (2007). Curr. Pharm. Des. 13, 3155–3167. [DOI] [PubMed]
  4. El-Shorbagi, A. N. (2000). Arch. Pharm. 33, 281–284. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Kalkhambkar, R. G., Kulkarni, G. M. & Lee, C.-S. (2007). X-ray Struct. Anal. Online, 23, 31–32.
  7. Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879. [DOI] [PMC free article] [PubMed]
  8. Nawrot-Modraka, J., Nawrot, E. & Graczik, J. (2006). Eur. J. Med. Chem. 41, 1301–1309. [DOI] [PubMed]
  9. Ronconi, L., Marzano, C., Zanello, P., Corsini, M., Miolo, G., Macca, C., Trevisan, A. & Fregona, D. (2006). J. Med. Chem. 49, 1648–1657. [DOI] [PubMed]
  10. Shastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416–2422.
  11. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Smith, R. H., Jorgen, W. H., Tirado, R. J. & Lamb, M. L. (1998). J. Med. Chem. 41, 5272–5286. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019757/wn2474sup1.cif

e-68-o1657-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019757/wn2474Isup2.hkl

e-68-o1657-Isup2.hkl (145.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019757/wn2474Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES