Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1660. doi: 10.1107/S160053681201906X

rac-6-Eth­oxy-3,3a,4,9b-tetra­hydro-1,3-diphenyl-1H-chromeno[4,3-c]isoxazole-3a-carbonitrile

S Paramasivam a, J Srinivasan b, P R Seshadri a,*, M Bakthadoss b
PMCID: PMC3379258  PMID: 22719456

Abstract

The title compound, C25H22N2O3, with three stereogenic centres, crystallizes in a centrosymmetric space group as a racemate. The pyran ring adopts a sofa conformation and the five-membered isoxazole ring exhibits an envelope conformation. The dihedral angle between the benzene ring and the mean plane through the near coplanar atoms of the pyran ring is 10.54 (9)°. In the crystal, no significant intermolecular interactions are observed.

Related literature  

For the biological activity of the title compound, see: Rozman et al. (2002); Winn et al. (1976). For N-atom hybridization, see: Beddoes et al. (1986). For conformational analysis and puckering parameters, see: Cremer & Pople, (1975). For related structures, see: Kanchanadevi et al. (2011); Swaminathan et al. (2012).graphic file with name e-68-o1660-scheme1.jpg

Experimental  

Crystal data  

  • C25H22N2O3

  • M r = 398.45

  • Monoclinic, Inline graphic

  • a = 15.2994 (9) Å

  • b = 7.5421 (5) Å

  • c = 18.7248 (12) Å

  • β = 107.596 (4)°

  • V = 2059.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection  

  • Bruker SMART APEXII area-detector diffractometer

  • 18432 measured reflections

  • 5109 independent reflections

  • 2805 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.164

  • S = 1.04

  • 5109 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201906X/kp2408sup1.cif

e-68-o1660-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201906X/kp2408Isup3.hkl

e-68-o1660-Isup3.hkl (245.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201906X/kp2408Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.

supplementary crystallographic information

Comment

Isoxazole derivative is used for the treatment of rheumatoid arthritis (Rozman et al., 2002) whereas benzopyran derivatives exhibit anti-depressant activities (Winn et al., 1976). On this grounds, the title compound was chosen for X-ray structure analysis (Fig.1).

The pyran ring (O1/C1/C6—C9) adopts a sofa conformation with the puckering parameters (Cremer & Pople, 1975) being q2=0.426 (1) Å, q3=0.291 (1) Å, QT=0.516 (1) Å and the five-membered isoxazole ring (N1/O2/C7/C8/C11) adopts an envelope conformation with puckering parameters (Cremer & Pople, 1975) being q2=0.521 (19) Å and Φ2=219.3 (2)°. The dihedral angle between the pyran and the benzene rings (C1—C6) is 7.68 (5)°. Also the dihedral angle between the chromeno ring (fusion of benzene and pyran rings) and isoxazole ring is 40.31 (5)°.

In the chromenoisoxazole moiety, the dihedral angle between the benzene and isoxazole ring is 36.41 (5)° and the dihedral angle between the pyran and isoxazole ring is 42.56 (6)°.

The sum of the bond angles around N1 [321.17 (39)°] indicates sp3 hybridization (Beddoes et al.,1986).

The geometric parameters of the title compound (Fig. 1) agree well with the reported similar structures (Kanchanadevi et al., 2011; Swaminathan et al., 2012).

The molecular structure is stabilized by C— H··· N intramolecular interaction and the crystal packing is stabilised by C— H··· O and C— H··· N hydrogen bonds (Table 1).

Experimental

A mixture of (E)-2-((2-ethoxy-6-formylphenoxy)methyl)-3-phenylacrylonitrile (2 mmol, 0.61 g) and N-phenylhydroxylamine (3 mmol, 0.33 g) in ethanol (10 mL) was refluxed for 6 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (15 mL) and extracted with ethyl acetate (3 × 15 mL). The combined organic layer was washed with brine (3 × 15 mL) and dried over anhydrous Na2SO4, solvent was removed under reduced pressure. The crude mass was purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate-hexane (1:9) to afford the pure compound as a colourless solid in 76% yield.

Refinement

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Crystal data

C25H22N2O3 F(000) = 840
Mr = 398.45 Dx = 1.285 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5109 reflections
a = 15.2994 (9) Å θ = 1.4–28.3°
b = 7.5421 (5) Å µ = 0.09 mm1
c = 18.7248 (12) Å T = 298 K
β = 107.596 (4)° Block, colourless
V = 2059.6 (2) Å3 0.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 2805 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
Graphite monochromator θmax = 28.3°, θmin = 1.4°
ω and φ scans h = −20→20
18432 measured reflections k = −10→10
5109 independent reflections l = −20→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.2385P] where P = (Fo2 + 2Fc2)/3
5109 reflections (Δ/σ)max = 0.008
271 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.74167 (9) 0.45965 (16) 0.72376 (7) 0.0602 (4)
O2 0.88519 (9) −0.03937 (17) 0.68806 (7) 0.0612 (4)
O3 0.59365 (9) 0.65386 (17) 0.67710 (8) 0.0672 (4)
N1 0.81401 (10) 0.0634 (2) 0.63282 (8) 0.0543 (4)
C7 0.74962 (12) 0.0946 (2) 0.67721 (10) 0.0476 (4)
H7 0.7257 −0.0189 0.6887 0.057*
C8 0.81684 (12) 0.1717 (2) 0.74828 (10) 0.0514 (5)
C1 0.67024 (13) 0.3889 (2) 0.66889 (10) 0.0502 (4)
C6 0.67181 (12) 0.2174 (2) 0.64144 (9) 0.0483 (4)
C12 0.94613 (12) −0.0419 (3) 0.82161 (11) 0.0556 (5)
C11 0.90766 (13) 0.0711 (3) 0.75323 (11) 0.0561 (5)
H11 0.9542 0.1573 0.7500 0.067*
C20 0.77892 (12) −0.0486 (3) 0.56829 (11) 0.0548 (5)
C9 0.82649 (14) 0.3691 (2) 0.73450 (11) 0.0600 (5)
H9A 0.8727 0.4202 0.7770 0.072*
H9B 0.8466 0.3845 0.6905 0.072*
C2 0.59079 (13) 0.4927 (2) 0.64301 (10) 0.0542 (5)
C5 0.59528 (13) 0.1560 (3) 0.58543 (10) 0.0568 (5)
H5 0.5957 0.0426 0.5660 0.068*
C17 1.02141 (13) 0.0150 (3) 0.87856 (12) 0.0701 (6)
H17 1.0493 0.1221 0.8738 0.084*
C10 0.78370 (14) 0.1491 (3) 0.81384 (11) 0.0583 (5)
C3 0.51685 (14) 0.4285 (3) 0.58771 (11) 0.0620 (5)
H3 0.4646 0.4981 0.5695 0.074*
C18 0.50900 (15) 0.7498 (3) 0.66297 (12) 0.0695 (6)
H18A 0.4604 0.6702 0.6658 0.083*
H18B 0.4922 0.8014 0.6132 0.083*
C21 0.75973 (14) 0.0310 (3) 0.49899 (12) 0.0689 (6)
H21 0.7702 0.1517 0.4956 0.083*
C4 0.51968 (14) 0.2608 (3) 0.55889 (11) 0.0645 (5)
H4 0.4695 0.2189 0.5209 0.077*
N2 0.75559 (15) 0.1391 (3) 0.86341 (11) 0.0825 (6)
C13 0.90569 (15) −0.2018 (3) 0.83037 (13) 0.0706 (6)
H13 0.8547 −0.2422 0.7928 0.085*
C24 0.72930 (16) −0.3275 (3) 0.50900 (16) 0.0823 (7)
H24 0.7191 −0.4485 0.5120 0.099*
C25 0.76250 (14) −0.2284 (3) 0.57391 (13) 0.0674 (6)
H25 0.7736 −0.2816 0.6206 0.081*
C14 0.94057 (18) −0.3005 (3) 0.89414 (14) 0.0833 (7)
H14 0.9130 −0.4073 0.8997 0.100*
C23 0.71127 (16) −0.2466 (4) 0.43976 (15) 0.0866 (8)
H23 0.6897 −0.3139 0.3964 0.104*
C22 0.72498 (16) −0.0680 (4) 0.43459 (13) 0.0818 (7)
H22 0.7109 −0.0137 0.3879 0.098*
C19 0.52145 (18) 0.8905 (3) 0.71959 (13) 0.0847 (7)
H19A 0.4654 0.9562 0.7107 0.127*
H19B 0.5696 0.9688 0.7164 0.127*
H19C 0.5374 0.8383 0.7686 0.127*
C15 1.01620 (18) −0.2420 (4) 0.94988 (14) 0.0872 (7)
H15 1.0403 −0.3102 0.9927 0.105*
C16 1.05552 (16) −0.0852 (4) 0.94225 (14) 0.0865 (7)
H16 1.1060 −0.0449 0.9804 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0672 (8) 0.0368 (7) 0.0725 (8) 0.0015 (7) 0.0151 (7) −0.0087 (6)
O2 0.0582 (7) 0.0561 (8) 0.0708 (8) 0.0089 (7) 0.0220 (6) −0.0094 (7)
O3 0.0757 (9) 0.0444 (8) 0.0851 (9) 0.0107 (7) 0.0299 (7) −0.0058 (7)
N1 0.0549 (9) 0.0488 (9) 0.0627 (9) −0.0006 (8) 0.0231 (7) −0.0060 (8)
C7 0.0520 (10) 0.0342 (9) 0.0616 (10) −0.0033 (8) 0.0244 (8) −0.0045 (8)
C8 0.0555 (10) 0.0395 (10) 0.0610 (10) 0.0004 (9) 0.0204 (8) −0.0017 (8)
C1 0.0605 (11) 0.0397 (10) 0.0534 (10) −0.0001 (9) 0.0218 (9) −0.0007 (8)
C6 0.0554 (10) 0.0399 (10) 0.0545 (10) −0.0027 (9) 0.0240 (8) −0.0013 (8)
C12 0.0487 (10) 0.0470 (11) 0.0731 (12) 0.0038 (9) 0.0214 (9) −0.0080 (10)
C11 0.0546 (11) 0.0458 (11) 0.0710 (12) −0.0044 (9) 0.0238 (9) −0.0098 (10)
C20 0.0519 (10) 0.0526 (12) 0.0648 (11) 0.0029 (9) 0.0251 (9) −0.0079 (10)
C9 0.0638 (12) 0.0409 (11) 0.0730 (12) −0.0069 (10) 0.0176 (10) −0.0079 (9)
C2 0.0712 (12) 0.0392 (10) 0.0593 (10) 0.0030 (10) 0.0305 (10) 0.0009 (9)
C5 0.0623 (12) 0.0500 (11) 0.0601 (11) −0.0002 (10) 0.0215 (9) −0.0089 (9)
C17 0.0510 (11) 0.0743 (15) 0.0850 (15) 0.0001 (11) 0.0207 (11) −0.0111 (13)
C10 0.0663 (12) 0.0445 (11) 0.0633 (12) 0.0067 (10) 0.0185 (10) −0.0027 (10)
C3 0.0659 (12) 0.0612 (13) 0.0592 (11) 0.0117 (11) 0.0195 (10) 0.0024 (10)
C18 0.0842 (15) 0.0556 (13) 0.0758 (13) 0.0181 (12) 0.0346 (11) 0.0065 (11)
C21 0.0695 (13) 0.0741 (15) 0.0702 (13) −0.0071 (12) 0.0318 (11) −0.0062 (12)
C4 0.0642 (12) 0.0679 (14) 0.0581 (11) 0.0047 (11) 0.0135 (9) −0.0080 (10)
N2 0.1075 (15) 0.0767 (14) 0.0739 (12) 0.0162 (12) 0.0432 (11) 0.0031 (10)
C13 0.0691 (13) 0.0496 (13) 0.0844 (15) 0.0020 (11) 0.0100 (11) −0.0020 (11)
C24 0.0709 (14) 0.0604 (14) 0.1057 (19) 0.0073 (12) 0.0118 (13) −0.0213 (14)
C25 0.0668 (13) 0.0516 (12) 0.0803 (13) 0.0061 (11) 0.0170 (10) −0.0087 (11)
C14 0.0882 (17) 0.0614 (14) 0.0978 (17) 0.0092 (13) 0.0241 (14) 0.0120 (13)
C23 0.0663 (14) 0.105 (2) 0.0869 (18) 0.0002 (15) 0.0207 (12) −0.0399 (17)
C22 0.0761 (15) 0.105 (2) 0.0679 (14) −0.0043 (15) 0.0270 (11) −0.0103 (14)
C19 0.1040 (18) 0.0717 (15) 0.0895 (16) 0.0167 (14) 0.0460 (14) −0.0053 (13)
C15 0.0762 (16) 0.093 (2) 0.0865 (17) 0.0249 (16) 0.0158 (13) 0.0133 (15)
C16 0.0588 (13) 0.110 (2) 0.0824 (16) 0.0111 (15) 0.0096 (12) −0.0049 (16)

Geometric parameters (Å, º)

O1—C1 1.362 (2) C17—C16 1.375 (3)
O1—C9 1.426 (2) C17—H17 0.9300
O2—C11 1.431 (2) C10—N2 1.137 (2)
O2—N1 1.4748 (19) C3—C4 1.381 (3)
O3—C2 1.368 (2) C3—H3 0.9300
O3—C18 1.437 (2) C18—C19 1.471 (3)
N1—C20 1.438 (2) C18—H18A 0.9700
N1—C7 1.487 (2) C18—H18B 0.9700
C7—C6 1.497 (2) C21—C22 1.381 (3)
C7—C8 1.529 (2) C21—H21 0.9300
C7—H7 0.9800 C4—H4 0.9300
C8—C10 1.473 (3) C13—C14 1.371 (3)
C8—C9 1.526 (3) C13—H13 0.9300
C8—C11 1.561 (3) C24—C23 1.383 (4)
C1—C6 1.395 (2) C24—C25 1.386 (3)
C1—C2 1.403 (3) C24—H24 0.9300
C6—C5 1.394 (2) C25—H25 0.9300
C12—C17 1.380 (3) C14—C15 1.376 (3)
C12—C13 1.388 (3) C14—H14 0.9300
C12—C11 1.502 (3) C23—C22 1.371 (4)
C11—H11 0.9800 C23—H23 0.9300
C20—C21 1.378 (3) C22—H22 0.9300
C20—C25 1.389 (3) C19—H19A 0.9600
C9—H9A 0.9700 C19—H19B 0.9600
C9—H9B 0.9700 C19—H19C 0.9600
C2—C3 1.370 (3) C15—C16 1.354 (4)
C5—C4 1.365 (3) C15—H15 0.9300
C5—H5 0.9300 C16—H16 0.9300
C1—O1—C9 114.04 (14) C16—C17—H17 119.7
C11—O2—N1 103.20 (12) C12—C17—H17 119.7
C2—O3—C18 117.52 (16) N2—C10—C8 176.6 (2)
C20—N1—O2 106.84 (13) C2—C3—C4 120.16 (19)
C20—N1—C7 114.86 (14) C2—C3—H3 119.9
O2—N1—C7 99.47 (12) C4—C3—H3 119.9
N1—C7—C6 114.78 (14) O3—C18—C19 108.52 (18)
N1—C7—C8 99.30 (13) O3—C18—H18A 110.0
C6—C7—C8 112.86 (14) C19—C18—H18A 110.0
N1—C7—H7 109.8 O3—C18—H18B 110.0
C6—C7—H7 109.8 C19—C18—H18B 110.0
C8—C7—H7 109.8 H18A—C18—H18B 108.4
C10—C8—C9 109.21 (15) C20—C21—C22 120.2 (2)
C10—C8—C7 111.77 (15) C20—C21—H21 119.9
C9—C8—C7 107.33 (15) C22—C21—H21 119.9
C10—C8—C11 114.76 (15) C5—C4—C3 120.78 (19)
C9—C8—C11 110.76 (15) C5—C4—H4 119.6
C7—C8—C11 102.66 (14) C3—C4—H4 119.6
O1—C1—C6 122.82 (16) C14—C13—C12 120.3 (2)
O1—C1—C2 117.10 (16) C14—C13—H13 119.8
C6—C1—C2 119.98 (17) C12—C13—H13 119.8
C5—C6—C1 118.78 (17) C23—C24—C25 120.0 (2)
C5—C6—C7 120.29 (16) C23—C24—H24 120.0
C1—C6—C7 120.58 (16) C25—C24—H24 120.0
C17—C12—C13 118.5 (2) C24—C25—C20 119.1 (2)
C17—C12—C11 120.17 (19) C24—C25—H25 120.4
C13—C12—C11 121.32 (18) C20—C25—H25 120.4
O2—C11—C12 109.16 (15) C13—C14—C15 120.2 (2)
O2—C11—C8 104.61 (14) C13—C14—H14 119.9
C12—C11—C8 116.01 (15) C15—C14—H14 119.9
O2—C11—H11 108.9 C22—C23—C24 120.5 (2)
C12—C11—H11 108.9 C22—C23—H23 119.7
C8—C11—H11 108.9 C24—C23—H23 119.7
C21—C20—C25 120.29 (19) C23—C22—C21 119.7 (2)
C21—C20—N1 117.04 (18) C23—C22—H22 120.1
C25—C20—N1 122.65 (18) C21—C22—H22 120.1
O1—C9—C8 111.13 (15) C18—C19—H19A 109.5
O1—C9—H9A 109.4 C18—C19—H19B 109.5
C8—C9—H9A 109.4 H19A—C19—H19B 109.5
O1—C9—H9B 109.4 C18—C19—H19C 109.5
C8—C9—H9B 109.4 H19A—C19—H19C 109.5
H9A—C9—H9B 108.0 H19B—C19—H19C 109.5
O3—C2—C3 124.70 (18) C16—C15—C14 119.9 (2)
O3—C2—C1 115.63 (17) C16—C15—H15 120.0
C3—C2—C1 119.67 (17) C14—C15—H15 120.0
C4—C5—C6 120.53 (18) C15—C16—C17 120.5 (2)
C4—C5—H5 119.7 C15—C16—H16 119.7
C6—C5—H5 119.7 C17—C16—H16 119.7
C16—C17—C12 120.6 (2)
C11—O2—N1—C20 −172.76 (14) O2—N1—C20—C25 40.8 (2)
C11—O2—N1—C7 −53.05 (15) C7—N1—C20—C25 −68.5 (2)
C20—N1—C7—C6 −73.56 (19) C1—O1—C9—C8 −54.2 (2)
O2—N1—C7—C6 172.81 (13) C10—C8—C9—O1 −57.5 (2)
C20—N1—C7—C8 165.83 (15) C7—C8—C9—O1 63.88 (19)
O2—N1—C7—C8 52.20 (14) C11—C8—C9—O1 175.21 (14)
N1—C7—C8—C10 −156.53 (15) C18—O3—C2—C3 10.7 (3)
C6—C7—C8—C10 81.46 (18) C18—O3—C2—C1 −168.42 (16)
N1—C7—C8—C9 83.74 (16) O1—C1—C2—O3 −1.0 (2)
C6—C7—C8—C9 −38.3 (2) C6—C1—C2—O3 175.48 (15)
N1—C7—C8—C11 −33.04 (16) O1—C1—C2—C3 179.81 (16)
C6—C7—C8—C11 −155.05 (14) C6—C1—C2—C3 −3.7 (3)
C9—O1—C1—C6 18.2 (2) C1—C6—C5—C4 −1.1 (3)
C9—O1—C1—C2 −165.40 (15) C7—C6—C5—C4 172.18 (17)
O1—C1—C6—C5 179.70 (16) C13—C12—C17—C16 0.3 (3)
C2—C1—C6—C5 3.4 (3) C11—C12—C17—C16 178.19 (19)
O1—C1—C6—C7 6.5 (3) O3—C2—C3—C4 −177.50 (18)
C2—C1—C6—C7 −169.83 (15) C1—C2—C3—C4 1.6 (3)
N1—C7—C6—C5 80.0 (2) C2—O3—C18—C19 164.34 (17)
C8—C7—C6—C5 −167.23 (16) C25—C20—C21—C22 −0.7 (3)
N1—C7—C6—C1 −106.92 (18) N1—C20—C21—C22 −179.33 (18)
C8—C7—C6—C1 5.9 (2) C6—C5—C4—C3 −1.0 (3)
N1—O2—C11—C12 155.50 (14) C2—C3—C4—C5 0.8 (3)
N1—O2—C11—C8 30.73 (17) C17—C12—C13—C14 −0.4 (3)
C17—C12—C11—O2 137.73 (18) C11—C12—C13—C14 −178.3 (2)
C13—C12—C11—O2 −44.4 (2) C23—C24—C25—C20 −1.2 (3)
C17—C12—C11—C8 −104.5 (2) C21—C20—C25—C24 2.0 (3)
C13—C12—C11—C8 73.4 (2) N1—C20—C25—C24 −179.50 (18)
C10—C8—C11—O2 123.37 (17) C12—C13—C14—C15 −0.2 (4)
C9—C8—C11—O2 −112.41 (17) C25—C24—C23—C22 −0.7 (4)
C7—C8—C11—O2 1.90 (18) C24—C23—C22—C21 2.0 (4)
C10—C8—C11—C12 3.1 (2) C20—C21—C22—C23 −1.3 (3)
C9—C8—C11—C12 127.29 (17) C13—C14—C15—C16 1.0 (4)
C7—C8—C11—C12 −118.40 (17) C14—C15—C16—C17 −1.1 (4)
O2—N1—C20—C21 −140.65 (17) C12—C17—C16—C15 0.5 (3)
C7—N1—C20—C21 110.10 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9B···N1 0.97 2.64 2.960 (2) 100
C25—H25···O1i 0.93 2.89 3.748 (3) 154
C23—H23···N2ii 0.93 2.79 3.443 (3) 128

Symmetry codes: (i) x, y−1, z; (ii) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2408).

References

  1. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Ins., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Kanchanadevi, J., Anbalagan, G., Srinivasan, J., Bakthadoss, M. & Manivannan, V. (2011). Acta Cryst. E67, o1989. [DOI] [PMC free article] [PubMed]
  6. Rozman, B., Praprotnik, S., Logar, D., Tomsic, M., Hojnik, M., Kos-Golja, M., Accetto, R. & Dolenc, P. (2002). Ann. Rheum. Dis. 61, 567–569. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Swaminathan, K., Sethusankar, K., Srinivasan, J. & Bakthadoss, M. (2012). Acta Cryst. E68, o283–o284. [DOI] [PMC free article] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Winn, M., Arendsen, D., Dodge, P., Dren, A., Dunnigan, D., Hallas, R., Hwang, K., Kyncl, J., Lee, Y. H., Plotnikoff, N., Young Zaugg, H., Dalzell, H. & Razdan, R. K. (1976). J. Med. Chem. 19, 461–471. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201906X/kp2408sup1.cif

e-68-o1660-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201906X/kp2408Isup3.hkl

e-68-o1660-Isup3.hkl (245.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201906X/kp2408Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES