Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1665. doi: 10.1107/S1600536812019204

N-[4-(4-Bromo­phen­yl)thia­zol-2-yl]-4-(piperidin-1-yl)butanamide

Hazem A Ghabbour a, Adnan A Kadi a, Hussein I El-Subbagh b, Tze Shyang Chia c, Hoong-Kun Fun c,*,
PMCID: PMC3379262  PMID: 22719460

Abstract

In the title compound, C18H22BrN3OS, the piperidine ring adopts a chair conformation. The mean plane of the thia­zole ring forms dihedral angles of 23.97 (10) and 75.82 (10)° with the mean planes of its adjacent benzene and piperidine rings, respectively. An intra­molecular N—H⋯N hydrogen bond generates an S(7) ring motif in the mol­ecule. In the crystal, no significant inter­moelcular hydrogen bonds are observed, but a weak π–π inter­action with a centroid–centroid distance of 3.8855 (13) Å occurs.

Related literature  

For the pharmacological activity of 2-amino­thia­zole derivatives, see: Lednicer & Mitscher (1977); Vagdevi et al. (2006). For ring puckering parameters, see: Cremer & Pople (1975). For further synthetic details, see: El-Subbagh et al. (1999). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1665-scheme1.jpg

Experimental  

Crystal data  

  • C18H22BrN3OS

  • M r = 408.36

  • Triclinic, Inline graphic

  • a = 6.8276 (7) Å

  • b = 9.2782 (9) Å

  • c = 14.5907 (14) Å

  • α = 88.812 (2)°

  • β = 86.085 (3)°

  • γ = 75.394 (2)°

  • V = 892.33 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 100 K

  • 0.37 × 0.14 × 0.05 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.467, T max = 0.890

  • 17762 measured reflections

  • 5019 independent reflections

  • 4117 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.114

  • S = 1.07

  • 5019 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.80 e Å−3

  • Δρmin = −0.86 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019204/hb6767sup1.cif

e-68-o1665-sup1.cif (27.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019204/hb6767Isup2.hkl

e-68-o1665-Isup2.hkl (245.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019204/hb6767Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N3 0.93 (3) 1.83 (3) 2.742 (2) 167 (3)

Acknowledgments

HAG and AAK thank the Deanship of Scientific Research and Research Center, College of Pharmacy, King Saud University. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

2-Aminothiazole derivatives possess a wide range of pharmacological activities. Some of them have been used as anti-infective or anti-trichomonal agents. Those, having an aromatic substituent at C-4 position, exhibit some central nervous system (CNS) activities (Lednicer & Mitscher, 1977) and have been found to be potent biological response modifiers with significant immunosuppressant activity (Vagdevi et al., 2006).

The asymmetric unit of the title compound is shown in Fig. 1. The piperidine ring (N3/C14–C18) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975), Q = 0.572 (2) Å, θ = 2.6 (2)° and φ = 354 (6)°. The atoms N3 and C16 are deviated from the mean plane of C14/C15/C17/C18 by -0.6758 (16) and 0.6567 (18) Å, respectively. The mean plane of central thiazole ring (S1/N1/C7–C9) forms dihedral angles of 23.97 (10) and 75.82 (10)° with the mean planes of adjacent benzene ring (C1–C6) and piperidine ring, respectively. An intramolecular N2—H1N2···N3 hydrogen bond generates an S(7) ring motif in the molecule.

In the crystal, no significant intermoelcular hydrogen bondings are observed. The crystal packing is stabilized by Cg3—Cg3 interaction with centroid–centroid distance of 3.8855 (13) Å [symmetry code: 1-X,1-Y,1-Z; Cg3 is the centroid of C1–C6 ring].

Experimental

A mixture of N-(4-(4-bromophenyl)thiazol-2-yl)-4-chlorobutanamide (359 mg, 1 mmol) and piperidine (340 mg, 4 mmol) in dry toluene was stirred and heated to reflux. After 12 h, the mixture was cooled down to room temperature and the solvent was removed in vacuum. The residue was purified by chromatotron using CHCl3:EtOAc (9:1) as eluting system and the title compound was then crystallized from ethanol (El-Subbagh et al., 1999) as colourless plates.

Refinement

The atom H1N2 was located from difference fourier map and refined freely [N2—H1N2 = 0.93 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95 and 0.99 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C). Twelve outliers (4 5 5), (4 4 5), (4 3 6), (-3 - 2 7), (-3 - 3 7), (4 5 4), (4 4 6), (-2 - 2 5), (4 1 5), (-3 - 2 8), (1 1 2) and (3 1 0) were omitted.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids. The hydrogen bond is indicated by a dashed line.

Crystal data

C18H22BrN3OS Z = 2
Mr = 408.36 F(000) = 420
Triclinic, P1 Dx = 1.520 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8276 (7) Å Cell parameters from 5955 reflections
b = 9.2782 (9) Å θ = 3.1–29.8°
c = 14.5907 (14) Å µ = 2.43 mm1
α = 88.812 (2)° T = 100 K
β = 86.085 (3)° Plate, colourless
γ = 75.394 (2)° 0.37 × 0.14 × 0.05 mm
V = 892.33 (15) Å3

Data collection

Bruker APEX DUO CCD area-detector diffractometer 5019 independent reflections
Radiation source: fine-focus sealed tube 4117 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
φ and ω scans θmax = 29.9°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.467, Tmax = 0.890 k = −12→12
17762 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.091P] where P = (Fo2 + 2Fc2)/3
5019 reflections (Δ/σ)max = 0.001
221 parameters Δρmax = 1.80 e Å3
0 restraints Δρmin = −0.86 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.82800 (4) 0.81297 (2) 0.549438 (15) 0.02561 (9)
S1 0.28942 (9) 0.30257 (5) 0.19656 (4) 0.01885 (13)
O1 −0.0331 (3) 0.31993 (16) 0.09887 (11) 0.0220 (4)
N1 0.2084 (3) 0.56893 (18) 0.26349 (12) 0.0153 (3)
N2 −0.0331 (3) 0.54008 (18) 0.16321 (12) 0.0154 (4)
N3 −0.2166 (3) 0.83694 (18) 0.14310 (12) 0.0154 (4)
C1 0.3846 (4) 0.6922 (2) 0.40953 (15) 0.0197 (4)
H1A 0.2429 0.7288 0.4038 0.024*
C2 0.4825 (4) 0.7643 (2) 0.46664 (15) 0.0221 (5)
H2A 0.4083 0.8490 0.5007 0.027*
C3 0.6911 (4) 0.7117 (2) 0.47378 (15) 0.0187 (4)
C4 0.8022 (4) 0.5877 (2) 0.42470 (14) 0.0191 (4)
H4A 0.9445 0.5532 0.4294 0.023*
C5 0.7013 (4) 0.5153 (2) 0.36861 (14) 0.0180 (4)
H5A 0.7760 0.4298 0.3354 0.022*
C6 0.4927 (3) 0.5654 (2) 0.35987 (13) 0.0142 (4)
C7 0.3892 (3) 0.4898 (2) 0.29872 (14) 0.0155 (4)
C8 0.4539 (4) 0.3451 (2) 0.26968 (15) 0.0197 (4)
H8A 0.5741 0.2770 0.2876 0.024*
C9 0.1412 (3) 0.4853 (2) 0.20874 (14) 0.0146 (4)
C10 −0.1143 (4) 0.4531 (2) 0.11071 (13) 0.0154 (4)
C11 −0.3088 (4) 0.5259 (2) 0.06591 (15) 0.0177 (4)
H11A −0.3945 0.4541 0.0698 0.021*
H11B −0.2725 0.5386 −0.0001 0.021*
C12 −0.4417 (4) 0.6759 (2) 0.10078 (15) 0.0189 (4)
H12A −0.5764 0.6917 0.0754 0.023*
H12B −0.4621 0.6698 0.1684 0.023*
C13 −0.3601 (4) 0.8121 (2) 0.07711 (15) 0.0190 (4)
H13A −0.2907 0.7993 0.0149 0.023*
H13B −0.4754 0.9015 0.0758 0.023*
C14 −0.3271 (4) 0.9117 (2) 0.22672 (15) 0.0189 (4)
H14A −0.4143 0.8503 0.2553 0.023*
H14B −0.4158 1.0092 0.2098 0.023*
C15 −0.1798 (4) 0.9352 (2) 0.29574 (15) 0.0231 (5)
H15A −0.1006 0.8373 0.3172 0.028*
H15B −0.2573 0.9897 0.3497 0.028*
C16 −0.0344 (4) 1.0234 (2) 0.25308 (16) 0.0231 (5)
H16A −0.1106 1.1268 0.2402 0.028*
H16B 0.0691 1.0272 0.2967 0.028*
C17 0.0692 (4) 0.9490 (2) 0.16389 (16) 0.0211 (5)
H17A 0.1518 1.0120 0.1332 0.025*
H17B 0.1613 0.8515 0.1782 0.025*
C18 −0.0854 (4) 0.9263 (2) 0.09965 (15) 0.0195 (4)
H18A −0.1701 1.0244 0.0814 0.023*
H18B −0.0140 0.8754 0.0434 0.023*
H1N2 −0.083 (5) 0.643 (3) 0.163 (2) 0.031 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02680 (16) 0.02875 (14) 0.02536 (13) −0.01282 (10) −0.00715 (10) −0.00372 (9)
S1 0.0190 (3) 0.0121 (2) 0.0252 (3) −0.0019 (2) −0.0067 (2) −0.00195 (18)
O1 0.0235 (9) 0.0153 (7) 0.0278 (8) −0.0044 (7) −0.0060 (7) −0.0037 (6)
N1 0.0127 (9) 0.0143 (7) 0.0193 (8) −0.0041 (7) −0.0024 (7) −0.0009 (6)
N2 0.0123 (9) 0.0126 (7) 0.0220 (8) −0.0037 (7) −0.0043 (7) −0.0018 (6)
N3 0.0147 (9) 0.0136 (7) 0.0187 (8) −0.0050 (7) −0.0002 (7) −0.0003 (6)
C1 0.0156 (11) 0.0191 (9) 0.0237 (10) −0.0031 (9) −0.0020 (8) −0.0008 (8)
C2 0.0205 (12) 0.0209 (9) 0.0248 (10) −0.0050 (9) −0.0012 (9) −0.0036 (8)
C3 0.0215 (12) 0.0210 (9) 0.0175 (9) −0.0117 (9) −0.0053 (8) 0.0019 (7)
C4 0.0167 (11) 0.0223 (9) 0.0199 (9) −0.0070 (9) −0.0053 (8) 0.0029 (8)
C5 0.0172 (11) 0.0184 (9) 0.0187 (9) −0.0049 (8) −0.0020 (8) 0.0003 (7)
C6 0.0145 (10) 0.0143 (8) 0.0156 (8) −0.0062 (8) −0.0038 (8) 0.0018 (7)
C7 0.0125 (10) 0.0161 (8) 0.0181 (9) −0.0043 (8) −0.0004 (8) 0.0022 (7)
C8 0.0170 (12) 0.0169 (9) 0.0247 (10) −0.0022 (8) −0.0061 (9) 0.0004 (7)
C9 0.0133 (10) 0.0131 (8) 0.0178 (8) −0.0044 (8) −0.0001 (8) 0.0008 (6)
C10 0.0151 (11) 0.0169 (8) 0.0160 (8) −0.0076 (8) 0.0003 (8) 0.0000 (7)
C11 0.0147 (11) 0.0174 (9) 0.0225 (9) −0.0064 (8) −0.0031 (8) −0.0014 (7)
C12 0.0158 (11) 0.0190 (9) 0.0222 (10) −0.0043 (8) −0.0036 (8) −0.0011 (7)
C13 0.0168 (11) 0.0171 (9) 0.0240 (10) −0.0050 (8) −0.0053 (9) 0.0017 (7)
C14 0.0178 (11) 0.0163 (9) 0.0226 (10) −0.0061 (8) 0.0050 (9) −0.0026 (7)
C15 0.0300 (14) 0.0195 (9) 0.0209 (10) −0.0090 (10) 0.0031 (9) −0.0032 (8)
C16 0.0243 (13) 0.0198 (9) 0.0269 (11) −0.0087 (9) −0.0015 (9) −0.0039 (8)
C17 0.0156 (11) 0.0171 (9) 0.0322 (11) −0.0075 (8) 0.0013 (9) −0.0029 (8)
C18 0.0193 (12) 0.0190 (9) 0.0218 (9) −0.0088 (9) 0.0022 (8) −0.0003 (7)

Geometric parameters (Å, º)

Br1—C3 1.898 (2) C8—H8A 0.9500
S1—C8 1.720 (2) C10—C11 1.515 (3)
S1—C9 1.7473 (19) C11—C12 1.533 (3)
O1—C10 1.231 (2) C11—H11A 0.9900
N1—C9 1.306 (3) C11—H11B 0.9900
N1—C7 1.393 (3) C12—C13 1.529 (3)
N2—C10 1.362 (3) C12—H12A 0.9900
N2—C9 1.380 (3) C12—H12B 0.9900
N2—H1N2 0.93 (3) C13—H13A 0.9900
N3—C18 1.472 (3) C13—H13B 0.9900
N3—C14 1.478 (3) C14—C15 1.527 (4)
N3—C13 1.480 (3) C14—H14A 0.9900
C1—C2 1.383 (3) C14—H14B 0.9900
C1—C6 1.407 (3) C15—C16 1.532 (4)
C1—H1A 0.9500 C15—H15A 0.9900
C2—C3 1.394 (4) C15—H15B 0.9900
C2—H2A 0.9500 C16—C17 1.528 (3)
C3—C4 1.390 (3) C16—H16A 0.9900
C4—C5 1.389 (3) C16—H16B 0.9900
C4—H4A 0.9500 C17—C18 1.514 (3)
C5—C6 1.396 (3) C17—H17A 0.9900
C5—H5A 0.9500 C17—H17B 0.9900
C6—C7 1.466 (3) C18—H18A 0.9900
C7—C8 1.369 (3) C18—H18B 0.9900
C8—S1—C9 88.45 (10) H11A—C11—H11B 106.9
C9—N1—C7 110.70 (17) C13—C12—C11 116.0 (2)
C10—N2—C9 122.88 (17) C13—C12—H12A 108.3
C10—N2—H1N2 121 (2) C11—C12—H12A 108.3
C9—N2—H1N2 116 (2) C13—C12—H12B 108.3
C18—N3—C14 110.36 (17) C11—C12—H12B 108.3
C18—N3—C13 109.99 (17) H12A—C12—H12B 107.4
C14—N3—C13 110.74 (18) N3—C13—C12 113.05 (17)
C2—C1—C6 120.7 (2) N3—C13—H13A 109.0
C2—C1—H1A 119.7 C12—C13—H13A 109.0
C6—C1—H1A 119.7 N3—C13—H13B 109.0
C1—C2—C3 119.5 (2) C12—C13—H13B 109.0
C1—C2—H2A 120.3 H13A—C13—H13B 107.8
C3—C2—H2A 120.3 N3—C14—C15 110.96 (19)
C4—C3—C2 121.1 (2) N3—C14—H14A 109.4
C4—C3—Br1 119.07 (19) C15—C14—H14A 109.4
C2—C3—Br1 119.76 (17) N3—C14—H14B 109.4
C5—C4—C3 118.7 (2) C15—C14—H14B 109.4
C5—C4—H4A 120.6 H14A—C14—H14B 108.0
C3—C4—H4A 120.6 C14—C15—C16 111.38 (19)
C4—C5—C6 121.5 (2) C14—C15—H15A 109.4
C4—C5—H5A 119.2 C16—C15—H15A 109.4
C6—C5—H5A 119.2 C14—C15—H15B 109.4
C5—C6—C1 118.5 (2) C16—C15—H15B 109.4
C5—C6—C7 120.87 (18) H15A—C15—H15B 108.0
C1—C6—C7 120.6 (2) C17—C16—C15 109.71 (19)
C8—C7—N1 114.3 (2) C17—C16—H16A 109.7
C8—C7—C6 126.45 (19) C15—C16—H16A 109.7
N1—C7—C6 119.23 (17) C17—C16—H16B 109.7
C7—C8—S1 111.31 (17) C15—C16—H16B 109.7
C7—C8—H8A 124.3 H16A—C16—H16B 108.2
S1—C8—H8A 124.3 C18—C17—C16 111.1 (2)
N1—C9—N2 121.60 (17) C18—C17—H17A 109.4
N1—C9—S1 115.24 (16) C16—C17—H17A 109.4
N2—C9—S1 123.16 (15) C18—C17—H17B 109.4
O1—C10—N2 121.7 (2) C16—C17—H17B 109.4
O1—C10—C11 120.4 (2) H17A—C17—H17B 108.0
N2—C10—C11 117.80 (17) N3—C18—C17 111.59 (18)
C10—C11—C12 120.40 (18) N3—C18—H18A 109.3
C10—C11—H11A 107.2 C17—C18—H18A 109.3
C12—C11—H11A 107.2 N3—C18—H18B 109.3
C10—C11—H11B 107.2 C17—C18—H18B 109.3
C12—C11—H11B 107.2 H18A—C18—H18B 108.0
C6—C1—C2—C3 1.0 (3) C10—N2—C9—N1 −175.4 (2)
C1—C2—C3—C4 −0.2 (3) C10—N2—C9—S1 5.7 (3)
C1—C2—C3—Br1 178.34 (17) C8—S1—C9—N1 −0.78 (18)
C2—C3—C4—C5 −0.7 (3) C8—S1—C9—N2 178.24 (19)
Br1—C3—C4—C5 −179.21 (16) C9—N2—C10—O1 −1.9 (3)
C3—C4—C5—C6 0.8 (3) C9—N2—C10—C11 178.70 (19)
C4—C5—C6—C1 0.0 (3) O1—C10—C11—C12 162.6 (2)
C4—C5—C6—C7 178.56 (19) N2—C10—C11—C12 −18.0 (3)
C2—C1—C6—C5 −0.9 (3) C10—C11—C12—C13 73.2 (3)
C2—C1—C6—C7 −179.45 (19) C18—N3—C13—C12 157.54 (18)
C9—N1—C7—C8 −0.6 (3) C14—N3—C13—C12 −80.2 (2)
C9—N1—C7—C6 178.28 (19) C11—C12—C13—N3 −84.7 (2)
C5—C6—C7—C8 23.5 (3) C18—N3—C14—C15 −58.9 (2)
C1—C6—C7—C8 −158.0 (2) C13—N3—C14—C15 179.05 (17)
C5—C6—C7—N1 −155.2 (2) N3—C14—C15—C16 56.3 (2)
C1—C6—C7—N1 23.3 (3) C14—C15—C16—C17 −52.9 (3)
N1—C7—C8—S1 0.0 (3) C15—C16—C17—C18 53.2 (2)
C6—C7—C8—S1 −178.77 (17) C14—N3—C18—C17 59.7 (2)
C9—S1—C8—C7 0.39 (18) C13—N3—C18—C17 −177.78 (17)
C7—N1—C9—N2 −178.11 (19) C16—C17—C18—N3 −57.3 (2)
C7—N1—C9—S1 0.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···N3 0.93 (3) 1.83 (3) 2.742 (2) 167 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6767).

References

  1. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. El-Subbagh, H. I., Abadi, A. H. & Lehmann, J. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 137–142. [DOI] [PubMed]
  5. Lednicer, D. & Mitscher, L. A. (1977). The Organic Chemistry of Drug Synthesis, Vol. 1. New York: Wiley Interscience.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Vagdevi, H. M., Vaidya, V. P., Latha, K. P. & Padmashali, B. (2006). Indian J. Pharm. Sci. 68, 719–725.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019204/hb6767sup1.cif

e-68-o1665-sup1.cif (27.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019204/hb6767Isup2.hkl

e-68-o1665-Isup2.hkl (245.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019204/hb6767Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES