Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1666. doi: 10.1107/S1600536812019721

rac-1-(2-Amino­carbonyl-2-bromo­eth­yl)pyridinium bromide

Robert Köppen a,*, Franziska Emmerling a, Matthias Koch a
PMCID: PMC3379263  PMID: 22719461

Abstract

In the crystal structure of the title compound, C8H10BrN2O+·Br, inter­molecular N—H⋯Br hydrogen bonds link the mol­ecules into infinite chains along [001]. The inclined angle between the pyridine ring plane and the plane defined by the acid amide group is 63.97 (4)°.

Related literature  

The title compound is an inter­mediate in the synthesis of 3-triphenyl­phospho­nium­bromidopropionitrile and 1-tri­phen­yl­phospho­nium­bromido-2-pyridinium-bromidoethane, see: Khach­ikyan et al. (2009).graphic file with name e-68-o1666-scheme1.jpg

Experimental  

Crystal data  

  • C8H10BrN2O+·Br

  • M r = 310.00

  • Monoclinic, Inline graphic

  • a = 8.6024 (9) Å

  • b = 16.1200 (19) Å

  • c = 9.5092 (12) Å

  • β = 121.501 (8)°

  • V = 1124.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.18 mm−1

  • T = 296 K

  • 0.14 × 0.11 × 0.05 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.85, T max = 0.96

  • 10331 measured reflections

  • 2252 independent reflections

  • 1442 reflections with I > 2σ(I)

  • R int = 0.106

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.129

  • S = 1.00

  • 2252 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019721/fj2549sup1.cif

e-68-o1666-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019721/fj2549Isup2.hkl

e-68-o1666-Isup2.hkl (110.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019721/fj2549Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812019721/fj2549Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br2i 0.86 2.62 3.406 (7) 154
N2—H2B⋯Br2ii 0.86 2.57 3.428 (6) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

rac-1-(2-Aminocarbonyl-2-bromoethyl)pyridinium bromide is an intermediate in the synthesis of 3-triphenylphosphoniumbromidopropionitrile and 1-triphenylphosphoniumbromido-2-pyridinium-bromidoethane (Khachikyan et al., 2009). The compound crystallizes in the monoclinic space group P21/c. The molecular structure of the compound and the atom-labeling scheme are shown in Fig 1. The molecules are arranged in such a way that the pyridyl rings are stagged with respect to each other. However, the distance between the molecular planes (dcentroids=4.295 (4) Å) indicates only weak π-π interactions. Each molecule is connected to two adjacent bromine anions via intermolecular N—H···Br hydrogen bonds (see dashed orange bonds in Fig. 2). As a result infinite chains are formed along [001] direction.

Experimental

In a 250 ml, one-necked, round-bottomed flask fitted with a reflux condenser and a magnetic stirrer a mixture of 1.85 g of rac-2,3-dibromopropionic acid amide (7.98 mmol) and 0.63 g of pyridine (7.98 mmol) was diluted in 100 ml of acetonitrile and refluxed for 25 h. After cooling the flask was capped with a rubber septum equipped with a needle outlet for slow evaporation and then left in the dark at room temperature for 3 days. The obtained colorless crystals were suitable for direct single-crystal X-ray crystallography.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms, and 0.82 Å, Uiso = 1.5Ueq (C) for the amino group.

Figures

Fig. 1.

Fig. 1.

: ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

: View of the unit cell of the title compound along [100] (left) and [010] (right) showing the hydrogen-bonded chains along the [001] direction. Hydrogen bonds are drawn as dashed orange lines.

Crystal data

C8H10BrN2O+·Br F(000) = 600
Mr = 310.00 Dx = 1.831 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 42 reflections
a = 8.6024 (9) Å θ = 4–25°
b = 16.1200 (19) Å µ = 7.18 mm1
c = 9.5092 (12) Å T = 296 K
β = 121.501 (8)° Block, colourless
V = 1124.3 (2) Å3 0.14 × 0.11 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2252 independent reflections
Radiation source: fine-focus sealed tube 1442 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.106
ω/2θ scans θmax = 26.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.85, Tmax = 0.96 k = −19→18
10331 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0659P)2] where P = (Fo2 + 2Fc2)/3
2252 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.96 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.23648 (10) 0.06295 (5) 0.72065 (9) 0.0538 (3)
O1 0.3105 (6) 0.2759 (3) 0.8640 (6) 0.0652 (15)
N1 0.6197 (6) 0.1137 (3) 0.7616 (6) 0.0384 (12)
N2 0.0498 (7) 0.2553 (4) 0.6168 (7) 0.0661 (18)
H2A −0.0084 0.2935 0.6335 0.079*
H2B −0.0038 0.2274 0.5263 0.079*
C1 0.3180 (8) 0.1706 (4) 0.6882 (7) 0.0357 (14)
H1 0.2813 0.1761 0.5722 0.043*
C2 0.2227 (9) 0.2392 (4) 0.7308 (8) 0.0460 (16)
C3 0.5231 (8) 0.1790 (4) 0.7954 (7) 0.0408 (15)
H3A 0.5591 0.2329 0.7764 0.049*
H3B 0.5590 0.1762 0.9104 0.049*
C4 0.6778 (10) 0.0453 (4) 0.8562 (8) 0.0487 (17)
H4 0.6589 0.0398 0.9435 0.058*
C5 0.7646 (11) −0.0161 (5) 0.8247 (9) 0.061 (2)
H5 0.8030 −0.0639 0.8891 0.073*
C6 0.7945 (10) −0.0071 (5) 0.6982 (10) 0.061 (2)
H6 0.8561 −0.0482 0.6778 0.073*
C7 0.7336 (10) 0.0633 (4) 0.6000 (9) 0.0541 (18)
H7 0.7516 0.0698 0.5123 0.065*
C8 0.6458 (8) 0.1229 (4) 0.6362 (8) 0.0432 (15)
H8 0.6038 0.1707 0.5720 0.052*
Br2 0.79943 (9) 0.35088 (4) 0.75292 (7) 0.0465 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0548 (5) 0.0502 (5) 0.0573 (5) −0.0118 (3) 0.0299 (4) −0.0013 (3)
O1 0.047 (3) 0.087 (4) 0.050 (3) 0.002 (3) 0.018 (3) −0.035 (3)
N1 0.038 (3) 0.039 (3) 0.038 (3) 0.002 (2) 0.020 (3) −0.003 (2)
N2 0.045 (4) 0.079 (4) 0.054 (4) 0.019 (3) 0.012 (3) −0.027 (3)
C1 0.044 (4) 0.038 (3) 0.027 (3) 0.001 (3) 0.020 (3) −0.001 (2)
C2 0.049 (5) 0.050 (4) 0.041 (4) −0.002 (3) 0.025 (4) −0.005 (3)
C3 0.040 (4) 0.040 (4) 0.044 (3) −0.001 (3) 0.022 (3) −0.003 (3)
C4 0.059 (5) 0.046 (4) 0.041 (4) 0.008 (3) 0.026 (4) 0.006 (3)
C5 0.068 (5) 0.051 (5) 0.057 (4) 0.018 (4) 0.028 (4) 0.010 (4)
C6 0.045 (4) 0.064 (5) 0.067 (5) 0.010 (4) 0.024 (4) −0.016 (4)
C7 0.051 (5) 0.064 (5) 0.053 (4) 0.001 (4) 0.032 (4) −0.001 (4)
C8 0.039 (4) 0.047 (4) 0.043 (4) 0.000 (3) 0.020 (3) 0.004 (3)
Br2 0.0511 (5) 0.0474 (4) 0.0384 (4) 0.0015 (3) 0.0216 (3) −0.0004 (3)

Geometric parameters (Å, º)

Br1—C1 1.956 (6) C3—H3A 0.9700
O1—C2 1.235 (7) C3—H3B 0.9700
N1—C8 1.333 (7) C4—C5 1.364 (9)
N1—C4 1.343 (8) C4—H4 0.9300
N1—C3 1.477 (7) C5—C6 1.363 (10)
N2—C2 1.330 (8) C5—H5 0.9300
N2—H2A 0.8599 C6—C7 1.386 (10)
N2—H2B 0.8601 C6—H6 0.9300
C1—C3 1.513 (8) C7—C8 1.373 (9)
C1—C2 1.550 (9) C7—H7 0.9300
C1—H1 0.9800 C8—H8 0.9300
C8—N1—C4 120.9 (5) N1—C3—H3B 109.1
C8—N1—C3 119.4 (5) C1—C3—H3B 109.1
C4—N1—C3 119.7 (5) H3A—C3—H3B 107.9
C2—N2—H2A 120.0 N1—C4—C5 120.3 (6)
C2—N2—H2B 120.0 N1—C4—H4 119.9
H2A—N2—H2B 120.0 C5—C4—H4 119.9
C3—C1—C2 110.5 (5) C4—C5—C6 119.5 (7)
C3—C1—Br1 111.2 (4) C4—C5—H5 120.2
C2—C1—Br1 108.0 (4) C6—C5—H5 120.2
C3—C1—H1 109.1 C5—C6—C7 120.2 (7)
C2—C1—H1 109.1 C5—C6—H6 119.9
Br1—C1—H1 109.1 C7—C6—H6 119.9
O1—C2—N2 124.5 (6) C8—C7—C6 117.9 (6)
O1—C2—C1 119.0 (6) C8—C7—H7 121.1
N2—C2—C1 116.4 (5) C6—C7—H7 121.1
N1—C3—C1 112.3 (5) N1—C8—C7 121.2 (6)
N1—C3—H3A 109.1 N1—C8—H8 119.4
C1—C3—H3A 109.1 C7—C8—H8 119.4
C3—C1—C2—O1 −18.5 (8) C8—N1—C4—C5 −0.2 (10)
Br1—C1—C2—O1 103.3 (6) C3—N1—C4—C5 178.9 (6)
C3—C1—C2—N2 160.2 (6) N1—C4—C5—C6 1.1 (11)
Br1—C1—C2—N2 −78.1 (6) C4—C5—C6—C7 −1.5 (12)
C8—N1—C3—C1 83.1 (7) C5—C6—C7—C8 1.0 (11)
C4—N1—C3—C1 −96.1 (7) C4—N1—C8—C7 −0.3 (9)
C2—C1—C3—N1 178.7 (5) C3—N1—C8—C7 −179.4 (6)
Br1—C1—C3—N1 58.8 (6) C6—C7—C8—N1 −0.1 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Br2i 0.86 2.62 3.406 (7) 154
N2—H2B···Br2ii 0.86 2.57 3.428 (6) 173

Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2549).

References

  1. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Khachikyan, R. D., Tovmasyan, N. V. & Indzhikyan, M. G. (2009). Russ. J. Gen. Chem. 79, 759–761.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812019721/fj2549sup1.cif

e-68-o1666-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019721/fj2549Isup2.hkl

e-68-o1666-Isup2.hkl (110.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019721/fj2549Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812019721/fj2549Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES