Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1670. doi: 10.1107/S1600536812018703

2-[4,5-Diphenyl-2-(pyridin-2-yl)-1H-imidazol-1-yl]-3-phenyl­propan-1-ol

Liangru Yang a, Yongmei Xiao a, Kun He a, Jinwei Yuan a, Pu Mao a,*
PMCID: PMC3379267  PMID: 22719465

Abstract

In the title compound, C29H25N3O, the central imidazole ring forms dihedral angles of 64.7 (3), 33.5 (3) and 81.2 (2)° with the pyridyl and two phenyl substituents, respectively. An intra­molecular C—H⋯N hydrogen bond is observed. In the crystal, O—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into chains parallel to the a axis.

Related literature  

For the synthesis and properties of chiral ionic liquids, see: Ding & Armstrong (2005); Bwambok et al. (2008); Mao et al. (2010). For a related structure, see: Xiao et al. (2012).graphic file with name e-68-o1670-scheme1.jpg

Experimental  

Crystal data  

  • C29H25N3O

  • M r = 431.52

  • Orthorhombic, Inline graphic

  • a = 9.2695 (4) Å

  • b = 15.8818 (6) Å

  • c = 16.0498 (6) Å

  • V = 2362.79 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 291 K

  • 0.38 × 0.28 × 0.25 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.809, T max = 0.868

  • 9413 measured reflections

  • 4442 independent reflections

  • 3981 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.102

  • S = 1.04

  • 4442 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983), 1871 Friedel pairs

  • Flack parameter: 0.2 (4)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018703/rz2739sup1.cif

e-68-o1670-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018703/rz2739Isup2.hkl

e-68-o1670-Isup2.hkl (217.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018703/rz2739Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27A⋯N3 0.97 2.42 3.277 (2) 146
C22—H22⋯O1i 0.93 2.54 3.350 (3) 146
O1—H1⋯N1ii 0.85 (3) 1.94 (3) 2.789 (2) 174 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of the People’s Republic of China (Nos. 20902017 and 21172055).

supplementary crystallographic information

Comment

Our group is interested in the synthesis of chiral imidazole derivatives from natural precursors through a convenient four component–one pot synthetic protocol using an aldehyde, glyoxal, ammonia, and an amine (Mao et al., 2010). During our studies we observed that by carefully choosing the four components, a number of different imidazole derivatives could be obtained easily (Xiao et al., 2012). The condensation of L-phenylalaninol, dibenzoyl, 2-formyl pyridine and ammonium acetate afforded the title compound. This compound may serve as a starting material for the research of imidazolium based chiral ionic liquids in catalysis, chiral recognization and separation (Ding & Armstrong, 2005; Bwambok et al., 2008).

The molecular structure of the title compound is shown in Figure 1. As expected, the imidazole core (N1, C7, C8, N2, C15) is essentially planar, featuring an average deviation smaller than 0.6 (2) Å. The dihedral angle between the pyridyl and imidazole rings is 64.7 (3) °, and the dihedral angles between the two phenyl substituents and the imidazole ring are 33.5 (3)° and 81.2 (2)°, respectively. The chiral C28 atom maintains the S configuration of the L-phenylalaninol. The molecular conformation is enforced by an intramolecular C—H···N hydrogen bond (Table 1). In the crystal structure, molecules are linked by intermolecular O–H···N and C—H···O hydrogen bonds into chains parallel to the a axis.

Experimental

To a solution of L-phenylalaninol (15.1 g, 0.1 mol) in MeOH (50 ml) in an ice-bath, molar equivalents of dibenzoyl, 2-formyl pyridine and ammonium acetate were added. The mixture was kept stirring in the ice-bath until all the solids were dissolved before being heated to 60°C for 5 h. The mixture was then cooled to r.t. and the solvent was removed by evaporation. The residue was washed with H2O to obtain the crude product. Crystallization of the crude product in EtOH afforded colourless crystals of the title compound.

Refinement

The H atoms associated to the hydroxy group and to the C29 methylene group were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.98 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.

Crystal data

C29H25N3O F(000) = 912
Mr = 431.52 Dx = 1.213 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 3448 reflections
a = 9.2695 (4) Å θ = 3.9–70.3°
b = 15.8818 (6) Å µ = 0.58 mm1
c = 16.0498 (6) Å T = 291 K
V = 2362.79 (16) Å3 Prismatic, colourless
Z = 4 0.38 × 0.28 × 0.25 mm

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 4442 independent reflections
Radiation source: fine-focus sealed tube 3981 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω scans θmax = 70.4°, θmin = 3.9°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) h = −11→6
Tmin = 0.809, Tmax = 0.868 k = −19→19
9413 measured reflections l = −19→18

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1152P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.12 e Å3
4442 reflections Δρmin = −0.13 e Å3
311 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0043 (3)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1871 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.2 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.74800 (17) 0.67325 (12) 0.63461 (10) 0.0746 (4)
H1 0.788 (3) 0.6736 (19) 0.5871 (18) 0.094 (9)*
N1 0.38909 (18) 0.81423 (9) 0.51834 (9) 0.0550 (4)
N2 0.45320 (16) 0.73451 (8) 0.62480 (8) 0.0463 (3)
N3 0.3134 (2) 0.60522 (11) 0.49389 (10) 0.0667 (5)
C1 0.3385 (3) 1.00699 (12) 0.64156 (14) 0.0632 (5)
H1A 0.3170 0.9829 0.6929 0.076*
C2 0.3175 (3) 1.09285 (14) 0.63001 (17) 0.0765 (7)
H2 0.2801 1.1254 0.6731 0.092*
C3 0.3515 (4) 1.12968 (14) 0.55573 (18) 0.0897 (9)
H3 0.3390 1.1873 0.5484 0.108*
C4 0.4043 (4) 1.08104 (15) 0.49205 (18) 0.0922 (8)
H4 0.4270 1.1059 0.4413 0.111*
C5 0.4241 (3) 0.99523 (14) 0.50254 (15) 0.0744 (6)
H5 0.4599 0.9629 0.4588 0.089*
C6 0.3908 (2) 0.95713 (11) 0.57826 (12) 0.0559 (5)
C7 0.4089 (2) 0.86522 (10) 0.58664 (11) 0.0507 (4)
C8 0.44924 (19) 0.81699 (10) 0.65331 (10) 0.0462 (4)
C9 0.5020 (2) 0.84066 (10) 0.73772 (10) 0.0499 (4)
C10 0.6491 (3) 0.84668 (14) 0.75092 (14) 0.0680 (5)
H10 0.7133 0.8351 0.7079 0.082*
C11 0.7002 (4) 0.87002 (17) 0.82853 (18) 0.0939 (9)
H11 0.7990 0.8748 0.8372 0.113*
C12 0.6071 (5) 0.88607 (16) 0.89254 (16) 0.1047 (13)
H12 0.6425 0.9013 0.9446 0.126*
C13 0.4622 (4) 0.87974 (17) 0.87992 (14) 0.0975 (10)
H13 0.3989 0.8909 0.9235 0.117*
C14 0.4087 (3) 0.85679 (14) 0.80277 (13) 0.0712 (6)
H14 0.3096 0.8522 0.7947 0.085*
C15 0.4153 (2) 0.73696 (11) 0.54294 (10) 0.0496 (4)
C16 0.4123 (2) 0.66518 (10) 0.48335 (10) 0.0503 (4)
C17 0.5080 (3) 0.66655 (14) 0.41749 (13) 0.0661 (5)
H17 0.5735 0.7105 0.4115 0.079*
C18 0.5044 (3) 0.60158 (16) 0.36082 (15) 0.0778 (6)
H18 0.5682 0.6007 0.3161 0.093*
C19 0.4059 (3) 0.53848 (14) 0.37106 (15) 0.0769 (6)
H19 0.4017 0.4934 0.3342 0.092*
C20 0.3140 (3) 0.54377 (14) 0.43719 (14) 0.0771 (7)
H20 0.2462 0.5011 0.4433 0.093*
C21 0.1277 (2) 0.65894 (16) 0.71789 (14) 0.0702 (5)
H21 0.1068 0.6486 0.6621 0.084*
C22 0.0228 (3) 0.69407 (19) 0.7686 (2) 0.0900 (8)
H22 −0.0677 0.7066 0.7469 0.108*
C23 0.0523 (3) 0.71040 (17) 0.85053 (19) 0.0858 (8)
H23 −0.0175 0.7347 0.8845 0.103*
C24 0.1850 (3) 0.69072 (16) 0.88228 (15) 0.0768 (6)
H24 0.2050 0.7012 0.9381 0.092*
C25 0.2892 (2) 0.65539 (14) 0.83191 (13) 0.0620 (5)
H25 0.3791 0.6423 0.8543 0.074*
C26 0.2624 (2) 0.63902 (11) 0.74854 (11) 0.0518 (4)
C27 0.3778 (2) 0.60045 (11) 0.69460 (11) 0.0550 (4)
H27A 0.3347 0.5818 0.6427 0.066*
H27B 0.4167 0.5513 0.7226 0.066*
C28 0.5014 (2) 0.66113 (10) 0.67490 (10) 0.0475 (4)
H28 0.5348 0.6836 0.7284 0.057*
C29 0.6303 (2) 0.61828 (12) 0.63495 (11) 0.0552 (4)
H29A 0.607 (2) 0.5961 (13) 0.5795 (12) 0.054 (5)*
H29B 0.656 (2) 0.5676 (14) 0.6711 (13) 0.058 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0663 (9) 0.0981 (12) 0.0593 (8) −0.0147 (9) 0.0172 (7) −0.0167 (8)
N1 0.0679 (9) 0.0455 (7) 0.0516 (8) −0.0010 (7) −0.0131 (7) 0.0021 (6)
N2 0.0545 (8) 0.0394 (6) 0.0449 (7) −0.0044 (6) 0.0003 (6) 0.0021 (5)
N3 0.0840 (12) 0.0588 (9) 0.0571 (9) −0.0182 (9) −0.0078 (8) −0.0028 (8)
C1 0.0696 (13) 0.0496 (9) 0.0703 (12) −0.0003 (9) −0.0161 (11) −0.0032 (9)
C2 0.0835 (15) 0.0513 (11) 0.0947 (17) 0.0112 (11) −0.0284 (14) −0.0126 (11)
C3 0.115 (2) 0.0438 (9) 0.110 (2) 0.0078 (12) −0.0412 (17) 0.0066 (12)
C4 0.131 (2) 0.0600 (13) 0.0858 (16) −0.0023 (15) −0.0165 (18) 0.0223 (12)
C5 0.1002 (18) 0.0520 (10) 0.0711 (12) 0.0030 (11) −0.0102 (13) 0.0109 (9)
C6 0.0619 (12) 0.0431 (8) 0.0626 (10) −0.0013 (8) −0.0200 (9) 0.0003 (8)
C7 0.0562 (10) 0.0428 (8) 0.0530 (9) −0.0027 (8) −0.0081 (8) −0.0006 (7)
C8 0.0498 (9) 0.0419 (7) 0.0470 (8) −0.0029 (7) 0.0014 (7) 0.0001 (6)
C9 0.0668 (10) 0.0383 (7) 0.0446 (8) −0.0040 (7) −0.0009 (8) 0.0027 (6)
C10 0.0750 (13) 0.0635 (11) 0.0654 (11) −0.0066 (10) −0.0133 (11) −0.0033 (10)
C11 0.118 (2) 0.0734 (14) 0.0907 (18) −0.0084 (15) −0.0504 (17) −0.0026 (14)
C12 0.199 (4) 0.0574 (12) 0.0574 (13) −0.0037 (19) −0.0422 (19) −0.0018 (10)
C13 0.172 (3) 0.0718 (15) 0.0484 (11) 0.0041 (18) 0.0144 (16) −0.0023 (10)
C14 0.0922 (16) 0.0635 (11) 0.0578 (11) −0.0013 (11) 0.0134 (11) 0.0014 (9)
C15 0.0545 (10) 0.0452 (8) 0.0492 (8) −0.0024 (8) −0.0041 (8) 0.0019 (7)
C16 0.0595 (10) 0.0438 (8) 0.0478 (8) 0.0027 (8) −0.0096 (8) 0.0010 (7)
C17 0.0654 (12) 0.0655 (11) 0.0675 (11) −0.0032 (10) 0.0017 (10) −0.0087 (9)
C18 0.0777 (14) 0.0837 (15) 0.0721 (13) 0.0122 (13) 0.0085 (12) −0.0193 (12)
C19 0.1013 (18) 0.0572 (11) 0.0721 (13) 0.0065 (12) −0.0160 (14) −0.0179 (10)
C20 0.1032 (19) 0.0589 (11) 0.0693 (13) −0.0229 (13) −0.0153 (13) −0.0068 (10)
C21 0.0683 (13) 0.0761 (13) 0.0663 (12) −0.0071 (11) −0.0070 (10) 0.0059 (10)
C22 0.0617 (14) 0.0954 (18) 0.113 (2) 0.0056 (13) 0.0016 (14) 0.0151 (16)
C23 0.0765 (16) 0.0768 (15) 0.1042 (19) 0.0024 (12) 0.0317 (15) 0.0014 (14)
C24 0.0943 (17) 0.0745 (13) 0.0616 (12) −0.0117 (13) 0.0199 (12) −0.0041 (10)
C25 0.0652 (12) 0.0650 (11) 0.0557 (10) −0.0059 (9) 0.0038 (9) 0.0049 (9)
C26 0.0590 (10) 0.0444 (8) 0.0521 (9) −0.0102 (8) 0.0057 (8) 0.0076 (7)
C27 0.0706 (12) 0.0403 (8) 0.0542 (9) −0.0067 (8) 0.0078 (9) 0.0018 (7)
C28 0.0596 (10) 0.0407 (7) 0.0423 (7) 0.0000 (7) 0.0018 (7) 0.0049 (6)
C29 0.0674 (11) 0.0531 (9) 0.0452 (8) 0.0070 (9) 0.0046 (8) 0.0036 (8)

Geometric parameters (Å, º)

O1—H1 0.85 (3) C13—H13 0.9300
O1—C29 1.397 (3) C13—C14 1.383 (4)
N1—C7 1.375 (2) C14—H14 0.9300
N1—C15 1.312 (2) C15—C16 1.488 (2)
N2—C8 1.388 (2) C16—C17 1.380 (3)
N2—C15 1.360 (2) C17—H17 0.9300
N2—C28 1.485 (2) C17—C18 1.376 (3)
N3—C16 1.333 (3) C18—H18 0.9300
N3—C20 1.334 (3) C18—C19 1.366 (4)
C1—H1A 0.9300 C19—H19 0.9300
C1—C2 1.390 (3) C19—C20 1.364 (4)
C1—C6 1.376 (3) C20—H20 0.9300
C2—H2 0.9300 C21—H21 0.9300
C2—C3 1.365 (4) C21—C22 1.385 (4)
C3—H3 0.9300 C21—C26 1.379 (3)
C3—C4 1.371 (4) C22—H22 0.9300
C4—H4 0.9300 C22—C23 1.368 (4)
C4—C5 1.385 (3) C23—H23 0.9300
C5—H5 0.9300 C23—C24 1.368 (4)
C5—C6 1.392 (3) C24—H24 0.9300
C6—C7 1.476 (2) C24—C25 1.379 (3)
C7—C8 1.368 (2) C25—H25 0.9300
C8—C9 1.488 (2) C25—C26 1.386 (3)
C9—C10 1.384 (3) C26—C27 1.507 (3)
C9—C14 1.380 (3) C27—H27A 0.9700
C10—H10 0.9300 C27—H27B 0.9700
C10—C11 1.383 (3) C27—C28 1.530 (2)
C11—H11 0.9300 C28—H28 0.9800
C11—C12 1.366 (5) C28—C29 1.517 (3)
C12—H12 0.9300 C29—H29A 0.98 (2)
C12—C13 1.361 (5) C29—H29B 1.02 (2)
C29—O1—H1 110 (2) N3—C16—C15 118.61 (17)
C15—N1—C7 106.63 (14) N3—C16—C17 123.39 (18)
C8—N2—C28 124.76 (14) C17—C16—C15 117.91 (17)
C15—N2—C8 106.54 (14) C16—C17—H17 120.7
C15—N2—C28 128.55 (14) C18—C17—C16 118.6 (2)
C16—N3—C20 115.7 (2) C18—C17—H17 120.7
C2—C1—H1A 119.5 C17—C18—H18 120.4
C6—C1—H1A 119.5 C19—C18—C17 119.1 (2)
C6—C1—C2 121.0 (2) C19—C18—H18 120.4
C1—C2—H2 119.9 C18—C19—H19 121.1
C3—C2—C1 120.3 (2) C20—C19—C18 117.8 (2)
C3—C2—H2 119.9 C20—C19—H19 121.1
C2—C3—H3 120.3 N3—C20—C19 125.3 (2)
C2—C3—C4 119.5 (2) N3—C20—H20 117.3
C4—C3—H3 120.3 C19—C20—H20 117.3
C3—C4—H4 119.6 C22—C21—H21 119.4
C3—C4—C5 120.7 (3) C26—C21—H21 119.4
C5—C4—H4 119.6 C26—C21—C22 121.2 (2)
C4—C5—H5 119.9 C21—C22—H22 120.0
C4—C5—C6 120.3 (2) C23—C22—C21 120.1 (3)
C6—C5—H5 119.9 C23—C22—H22 120.0
C1—C6—C5 118.20 (19) C22—C23—H23 120.2
C1—C6—C7 122.82 (19) C24—C23—C22 119.6 (3)
C5—C6—C7 118.96 (19) C24—C23—H23 120.2
N1—C7—C6 119.65 (16) C23—C24—H24 119.8
C8—C7—N1 109.29 (15) C23—C24—C25 120.3 (2)
C8—C7—C6 131.02 (16) C25—C24—H24 119.8
N2—C8—C9 121.99 (15) C24—C25—H25 119.4
C7—C8—N2 106.12 (14) C24—C25—C26 121.1 (2)
C7—C8—C9 131.32 (15) C26—C25—H25 119.4
C10—C9—C8 118.72 (18) C21—C26—C25 117.7 (2)
C14—C9—C8 122.0 (2) C21—C26—C27 122.11 (18)
C14—C9—C10 119.3 (2) C25—C26—C27 120.24 (19)
C9—C10—H10 120.2 C26—C27—H27A 108.9
C11—C10—C9 119.6 (3) C26—C27—H27B 108.9
C11—C10—H10 120.2 C26—C27—C28 113.23 (14)
C10—C11—H11 119.6 H27A—C27—H27B 107.7
C12—C11—C10 120.7 (3) C28—C27—H27A 108.9
C12—C11—H11 119.6 C28—C27—H27B 108.9
C11—C12—H12 120.1 N2—C28—C27 112.40 (15)
C13—C12—C11 119.8 (2) N2—C28—H28 106.5
C13—C12—H12 120.1 N2—C28—C29 111.11 (13)
C12—C13—H13 119.8 C27—C28—H28 106.5
C12—C13—C14 120.4 (3) C29—C28—C27 113.22 (15)
C14—C13—H13 119.8 C29—C28—H28 106.5
C9—C14—C13 120.1 (3) O1—C29—C28 109.65 (16)
C9—C14—H14 119.9 O1—C29—H29A 113.2 (12)
C13—C14—H14 119.9 O1—C29—H29B 108.3 (13)
N1—C15—N2 111.42 (15) C28—C29—H29A 111.7 (12)
N1—C15—C16 121.31 (15) C28—C29—H29B 107.3 (12)
N2—C15—C16 127.12 (15) H29A—C29—H29B 106.5 (16)
N1—C7—C8—N2 −0.3 (2) C10—C9—C14—C13 0.8 (3)
N1—C7—C8—C9 170.93 (19) C10—C11—C12—C13 −0.5 (4)
N1—C15—C16—N3 −116.1 (2) C11—C12—C13—C14 0.3 (4)
N1—C15—C16—C17 60.7 (3) C12—C13—C14—C9 −0.5 (4)
N2—C8—C9—C10 77.2 (2) C14—C9—C10—C11 −1.0 (3)
N2—C8—C9—C14 −102.9 (2) C15—N1—C7—C6 178.44 (19)
N2—C15—C16—N3 68.7 (3) C15—N1—C7—C8 0.6 (2)
N2—C15—C16—C17 −114.5 (2) C15—N2—C8—C7 0.0 (2)
N2—C28—C29—O1 64.47 (19) C15—N2—C8—C9 −172.28 (17)
N3—C16—C17—C18 −1.9 (3) C15—N2—C28—C27 −72.9 (2)
C1—C2—C3—C4 1.1 (4) C15—N2—C28—C29 55.2 (2)
C1—C6—C7—N1 147.0 (2) C15—C16—C17—C18 −178.6 (2)
C1—C6—C7—C8 −35.7 (3) C16—N3—C20—C19 −0.2 (4)
C2—C1—C6—C5 0.9 (3) C16—C17—C18—C19 0.6 (4)
C2—C1—C6—C7 −177.3 (2) C17—C18—C19—C20 0.8 (4)
C2—C3—C4—C5 −0.4 (5) C18—C19—C20—N3 −1.0 (4)
C3—C4—C5—C6 −0.1 (5) C20—N3—C16—C15 178.34 (19)
C4—C5—C6—C1 −0.2 (4) C20—N3—C16—C17 1.7 (3)
C4—C5—C6—C7 178.2 (2) C21—C22—C23—C24 −0.9 (4)
C5—C6—C7—N1 −31.3 (3) C21—C26—C27—C28 108.7 (2)
C5—C6—C7—C8 146.0 (2) C22—C21—C26—C25 0.0 (3)
C6—C1—C2—C3 −1.4 (4) C22—C21—C26—C27 179.8 (2)
C6—C7—C8—N2 −177.9 (2) C22—C23—C24—C25 0.6 (4)
C6—C7—C8—C9 −6.6 (4) C23—C24—C25—C26 0.0 (4)
C7—N1—C15—N2 −0.6 (2) C24—C25—C26—C21 −0.3 (3)
C7—N1—C15—C16 −176.46 (17) C24—C25—C26—C27 179.95 (18)
C7—C8—C9—C10 −92.9 (3) C25—C26—C27—C28 −71.5 (2)
C7—C8—C9—C14 87.0 (3) C26—C21—C22—C23 0.6 (4)
C8—N2—C15—N1 0.4 (2) C26—C27—C28—N2 −64.04 (19)
C8—N2—C15—C16 175.96 (18) C26—C27—C28—C29 169.04 (15)
C8—N2—C28—C27 112.38 (18) C27—C28—C29—O1 −167.93 (15)
C8—N2—C28—C29 −119.57 (18) C28—N2—C8—C7 175.71 (16)
C8—C9—C10—C11 178.9 (2) C28—N2—C8—C9 3.4 (3)
C8—C9—C14—C13 −179.1 (2) C28—N2—C15—N1 −175.13 (17)
C9—C10—C11—C12 0.9 (4) C28—N2—C15—C16 0.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C27—H27A···N3 0.97 2.42 3.277 (2) 146
C22—H22···O1i 0.93 2.54 3.350 (3) 146
O1—H1···N1ii 0.85 (3) 1.94 (3) 2.789 (2) 174 (3)

Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2739).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Bwambok, D. K., Marwani, H. M., Fernand, V. E., Fakayode, S. O., Lowry, M., Negulescu, I., Strongin, R. M. & Warner, I. M. (2008). Chirality, 20, 151–158. [DOI] [PMC free article] [PubMed]
  3. Ding, J. & Armstrong, D. W. (2005). Chirality, 17, 281–292. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Xiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018703/rz2739sup1.cif

e-68-o1670-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018703/rz2739Isup2.hkl

e-68-o1670-Isup2.hkl (217.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018703/rz2739Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES