Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1680. doi: 10.1107/S1600536812019861

2-Phenyl-N′-(2-phenyl­acet­yl)acetohydrazide

Hatem A Abdel-Aziz a, Ching Kheng Quah b,, Hoong-Kun Fun b,*,§
PMCID: PMC3379276  PMID: 22719474

Abstract

In the title compound, C16H16N2O2, the N′-acetyl­acetohydrazide group is approximately planar (r.m.s. deviation = 0.018 Å for the eight non-H atoms) and makes dihedral angles of 81.92 (6) and 65.19 (6)° with the terminal phenyl rings. The phenyl rings form a dihedral angle of 62.60 (7)°. In the crystal, mol­ecules are linked into sheets lying parallel to (001) by N—H⋯O and C—H⋯O hydrogen bonds. One O atom accepts one N—H⋯O and one C—H⋯O hydrogen bond and the other O atom accepts one N—H⋯O and two C—H⋯O hydrogen bonds. The N—H⋯O hydrogen bonds lead to R 2 2(8) loops and the C—H⋯O hydrogen bonds generate R 2 1(6) loops.

Related literature  

For general background to and the pharmaceutical applications of hydrazine derivatives, see: Bredihhin & Mäeorg (2008); Ragnarsson (2001); Ling et al. (2001). For further synthesis details, see: Magedov & Smushkevich (1991). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1680-scheme1.jpg

Experimental  

Crystal data  

  • C16H16N2O2

  • M r = 268.31

  • Triclinic, Inline graphic

  • a = 5.4531 (6) Å

  • b = 7.9283 (9) Å

  • c = 15.1758 (17) Å

  • α = 94.271 (2)°

  • β = 92.613 (2)°

  • γ = 90.830 (2)°

  • V = 653.50 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.14 × 0.05 mm

Data collection  

  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.968, T max = 0.996

  • 12991 measured reflections

  • 3458 independent reflections

  • 2428 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.134

  • S = 1.04

  • 3458 reflections

  • 245 parameters

  • All H-atom parameters refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019861/hb6773sup1.cif

e-68-o1680-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019861/hb6773Isup2.hkl

e-68-o1680-Isup2.hkl (169.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019861/hb6773Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.867 (16) 1.970 (16) 2.8076 (15) 162.4 (16)
C10—H10A⋯O1i 0.971 (16) 2.465 (16) 3.3103 (18) 145.3 (13)
N1—H1N1⋯O2ii 0.907 (16) 1.948 (16) 2.8283 (15) 163.2 (15)
C7—H7A⋯O2ii 0.973 (16) 2.479 (16) 3.3209 (18) 144.8 (13)
C7—H7B⋯O2iii 1.00 (2) 2.56 (2) 3.4929 (19) 155.2 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160) and the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

supplementary crystallographic information

Comment

Hydrazine derivatives are widely used in the pharmaceutical applications and also as precursors in organic synthesis (Bredihhin & Mäeorg, 2008). Several hydrazine derivatives were shown to be effective for treatment of tuberculosis, Parkinson's disease and hypertension (Ragnarsson, 2001). Moreover, some hydrazines possess neuroprotective activity and are used as antidepressant drugs (Ling et al., 2001).

In the title compound, Fig. 1, the N'-acetylacetohydrazide moiety (O1/O2/N1/N2/C7-C10) is approximately planar (r.m.s. deviation = 0.018 Å for the 8 non-H atoms) and makes dihedral angles of 81.92 (6) and 65.19 (6)° with the two terminal benzene rings (C1-C6 and C11-C16), respectively. The two benzene rings form a dihedral angle of 62.60 (7)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal (Fig.2), molecules are linked into planes parallel to the (001) via intermolecular N1–H1N1···O2, C7–H7A···O2 and C7–H7B···O2 trifurcated acceptor bonds (Table 1) and N2–H1N2···O1 and C10–H10A···O1 bifurcated acceptor bonds (Table 1), generating R21(6) ring motifs (Bernstein et al., 1995).

Experimental

The title compound was prepared by the reaction of 2-phenylacetyl chloride with 2-phenylacetohydrazide in the presence of sodium carbonate in water at 5-10 °C (Magedov & Smushkevich, 1991).

Refinement

All H atoms were located in a difference Fourier map and refined freely with N–H = 0.869 (18)-0.908 (19) Å and C–H = 0.942 (19)-1.013 (18) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C16H16N2O2 Z = 2
Mr = 268.31 F(000) = 284
Triclinic, P1 Dx = 1.364 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.4531 (6) Å Cell parameters from 3410 reflections
b = 7.9283 (9) Å θ = 4.0–30.0°
c = 15.1758 (17) Å µ = 0.09 mm1
α = 94.271 (2)° T = 100 K
β = 92.613 (2)° Needle, colourless
γ = 90.830 (2)° 0.35 × 0.14 × 0.05 mm
V = 653.50 (13) Å3

Data collection

Bruker SMART APEXII DUO CCD diffractometer 3458 independent reflections
Radiation source: fine-focus sealed tube 2428 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 29.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→7
Tmin = 0.968, Tmax = 0.996 k = −10→10
12991 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.1901P] where P = (Fo2 + 2Fc2)/3
3458 reflections (Δ/σ)max = 0.001
245 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.40065 (18) 0.64320 (12) 0.06665 (6) 0.0165 (2)
O2 1.08994 (18) 0.85895 (12) −0.07188 (6) 0.0166 (2)
N1 0.7067 (2) 0.81353 (14) 0.02864 (7) 0.0131 (2)
N2 0.7869 (2) 0.68791 (14) −0.03185 (7) 0.0136 (2)
C1 0.2796 (3) 0.94134 (17) 0.29275 (9) 0.0154 (3)
C2 0.3026 (3) 0.90738 (18) 0.38118 (9) 0.0185 (3)
C3 0.4978 (3) 0.81340 (18) 0.41175 (9) 0.0184 (3)
C4 0.6710 (3) 0.75379 (18) 0.35344 (9) 0.0180 (3)
C5 0.6502 (2) 0.78955 (17) 0.26515 (9) 0.0153 (3)
C6 0.4540 (2) 0.88282 (16) 0.23362 (8) 0.0127 (3)
C7 0.4336 (3) 0.92581 (17) 0.13786 (8) 0.0129 (3)
C8 0.5093 (2) 0.78171 (16) 0.07486 (8) 0.0120 (3)
C9 0.9839 (2) 0.71983 (16) −0.07846 (8) 0.0120 (3)
C10 1.0630 (3) 0.57244 (17) −0.13972 (8) 0.0137 (3)
C11 1.0445 (2) 0.61346 (16) −0.23584 (8) 0.0127 (3)
C12 1.2278 (3) 0.70965 (18) −0.27062 (9) 0.0162 (3)
C13 1.2100 (3) 0.74792 (18) −0.35846 (9) 0.0186 (3)
C14 1.0109 (3) 0.68811 (19) −0.41296 (9) 0.0200 (3)
C15 0.8286 (3) 0.59203 (19) −0.37894 (9) 0.0196 (3)
C16 0.8446 (3) 0.55437 (17) −0.29055 (9) 0.0161 (3)
H1N1 0.787 (3) 0.915 (2) 0.0321 (11) 0.023 (5)*
H1N2 0.705 (3) 0.593 (2) −0.0350 (11) 0.017 (4)*
H1A 0.148 (3) 1.007 (2) 0.2720 (11) 0.022 (4)*
H2A 0.175 (3) 0.951 (2) 0.4219 (10) 0.017 (4)*
H3A 0.519 (4) 0.786 (2) 0.4710 (13) 0.031 (5)*
H4A 0.809 (3) 0.686 (2) 0.3727 (11) 0.021 (4)*
H5A 0.775 (3) 0.747 (2) 0.2245 (11) 0.018 (4)*
H7A 0.529 (3) 1.028 (2) 0.1304 (10) 0.018 (4)*
H7B 0.259 (4) 0.953 (2) 0.1223 (12) 0.027 (5)*
H10A 0.967 (3) 0.471 (2) −0.1318 (10) 0.016 (4)*
H10B 1.240 (3) 0.554 (2) −0.1200 (11) 0.021 (4)*
H12A 1.373 (3) 0.757 (2) −0.2322 (11) 0.022 (4)*
H13A 1.339 (3) 0.814 (2) −0.3815 (12) 0.029 (5)*
H14A 1.002 (3) 0.713 (2) −0.4733 (12) 0.028 (5)*
H16A 0.720 (3) 0.489 (2) −0.2662 (12) 0.029 (5)*
H15A 0.692 (3) 0.549 (2) −0.4190 (11) 0.017 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0172 (5) 0.0123 (5) 0.0198 (5) −0.0052 (4) 0.0047 (4) −0.0010 (4)
O2 0.0172 (5) 0.0119 (5) 0.0206 (5) −0.0033 (4) 0.0051 (4) −0.0013 (4)
N1 0.0151 (6) 0.0101 (5) 0.0141 (5) −0.0019 (4) 0.0042 (4) −0.0016 (4)
N2 0.0156 (6) 0.0100 (5) 0.0150 (5) −0.0023 (4) 0.0052 (4) −0.0021 (4)
C1 0.0137 (6) 0.0143 (6) 0.0184 (6) −0.0001 (5) 0.0029 (5) 0.0002 (5)
C2 0.0195 (7) 0.0175 (7) 0.0185 (7) −0.0024 (5) 0.0059 (5) −0.0006 (5)
C3 0.0235 (8) 0.0176 (7) 0.0143 (6) −0.0031 (6) 0.0014 (5) 0.0021 (5)
C4 0.0170 (7) 0.0173 (7) 0.0191 (7) 0.0005 (5) −0.0028 (5) 0.0005 (5)
C5 0.0142 (6) 0.0146 (6) 0.0169 (6) 0.0002 (5) 0.0022 (5) −0.0011 (5)
C6 0.0128 (6) 0.0107 (6) 0.0143 (6) −0.0038 (5) 0.0017 (5) −0.0007 (5)
C7 0.0139 (6) 0.0106 (6) 0.0143 (6) 0.0000 (5) 0.0028 (5) −0.0003 (5)
C8 0.0124 (6) 0.0114 (6) 0.0121 (6) −0.0005 (5) −0.0006 (5) 0.0013 (4)
C9 0.0134 (6) 0.0112 (6) 0.0115 (6) −0.0001 (5) 0.0012 (5) 0.0013 (4)
C10 0.0156 (7) 0.0107 (6) 0.0149 (6) −0.0003 (5) 0.0039 (5) 0.0007 (5)
C11 0.0132 (6) 0.0090 (6) 0.0161 (6) 0.0016 (5) 0.0037 (5) −0.0008 (5)
C12 0.0148 (7) 0.0155 (6) 0.0179 (6) −0.0020 (5) 0.0026 (5) −0.0013 (5)
C13 0.0211 (7) 0.0169 (7) 0.0182 (7) −0.0019 (5) 0.0060 (5) 0.0009 (5)
C14 0.0254 (8) 0.0191 (7) 0.0155 (6) 0.0040 (6) 0.0016 (6) 0.0016 (5)
C15 0.0185 (7) 0.0185 (7) 0.0210 (7) 0.0010 (6) −0.0043 (6) −0.0005 (5)
C16 0.0131 (6) 0.0140 (6) 0.0212 (7) −0.0018 (5) 0.0020 (5) 0.0012 (5)

Geometric parameters (Å, º)

O1—C8 1.2355 (16) C7—C8 1.5089 (18)
O2—C9 1.2332 (16) C7—H7A 0.975 (18)
N1—C8 1.3426 (16) C7—H7B 1.002 (19)
N1—N2 1.3922 (14) C9—C10 1.5183 (18)
N1—H1N1 0.908 (19) C10—C11 1.5172 (18)
N2—C9 1.3443 (16) C10—H10A 0.972 (17)
N2—H1N2 0.869 (18) C10—H10B 1.013 (18)
C1—C2 1.3888 (19) C11—C16 1.3934 (19)
C1—C6 1.3977 (18) C11—C12 1.3951 (18)
C1—H1A 0.950 (18) C12—C13 1.3884 (19)
C2—C3 1.390 (2) C12—H12A 1.009 (18)
C2—H2A 1.000 (16) C13—C14 1.390 (2)
C3—C4 1.388 (2) C13—H13A 0.963 (19)
C3—H3A 0.942 (19) C14—C15 1.385 (2)
C4—C5 1.3899 (19) C14—H14A 0.949 (18)
C4—H4A 0.977 (17) C15—C16 1.3948 (19)
C5—C6 1.3960 (18) C15—H15A 0.980 (17)
C5—H5A 0.986 (17) C16—H16A 0.954 (19)
C6—C7 1.5167 (18)
C8—N1—N2 118.83 (11) O1—C8—N1 121.88 (12)
C8—N1—H1N1 123.8 (11) O1—C8—C7 122.94 (12)
N2—N1—H1N1 117.2 (11) N1—C8—C7 115.18 (11)
C9—N2—N1 118.90 (11) O2—C9—N2 122.08 (12)
C9—N2—H1N2 125.2 (11) O2—C9—C10 123.08 (12)
N1—N2—H1N2 115.9 (11) N2—C9—C10 114.84 (11)
C2—C1—C6 120.35 (13) C11—C10—C9 111.62 (11)
C2—C1—H1A 120.4 (10) C11—C10—H10A 110.1 (9)
C6—C1—H1A 119.2 (10) C9—C10—H10A 111.1 (10)
C1—C2—C3 120.42 (13) C11—C10—H10B 110.7 (10)
C1—C2—H2A 118.5 (9) C9—C10—H10B 104.3 (10)
C3—C2—H2A 121.0 (9) H10A—C10—H10B 108.8 (14)
C4—C3—C2 119.67 (13) C16—C11—C12 119.24 (12)
C4—C3—H3A 117.1 (12) C16—C11—C10 120.29 (12)
C2—C3—H3A 123.2 (12) C12—C11—C10 120.47 (12)
C3—C4—C5 120.00 (13) C13—C12—C11 120.42 (14)
C3—C4—H4A 121.6 (10) C13—C12—H12A 118.5 (10)
C5—C4—H4A 118.4 (10) C11—C12—H12A 121.0 (10)
C4—C5—C6 120.81 (12) C12—C13—C14 120.18 (13)
C4—C5—H5A 119.2 (9) C12—C13—H13A 119.3 (11)
C6—C5—H5A 120.0 (9) C14—C13—H13A 120.5 (11)
C5—C6—C1 118.74 (12) C15—C14—C13 119.70 (13)
C5—C6—C7 121.05 (11) C15—C14—H14A 120.6 (12)
C1—C6—C7 120.17 (12) C13—C14—H14A 119.7 (12)
C8—C7—C6 112.43 (11) C14—C15—C16 120.35 (14)
C8—C7—H7A 111.1 (10) C14—C15—H15A 118.1 (10)
C6—C7—H7A 110.0 (9) C16—C15—H15A 121.5 (10)
C8—C7—H7B 108.1 (11) C11—C16—C15 120.10 (13)
C6—C7—H7B 108.9 (10) C11—C16—H16A 118.7 (11)
H7A—C7—H7B 105.9 (14) C15—C16—H16A 121.2 (11)
C8—N1—N2—C9 179.72 (11) N1—N2—C9—O2 −2.93 (19)
C6—C1—C2—C3 −0.6 (2) N1—N2—C9—C10 177.53 (11)
C1—C2—C3—C4 0.2 (2) O2—C9—C10—C11 −61.91 (17)
C2—C3—C4—C5 0.6 (2) N2—C9—C10—C11 117.63 (13)
C3—C4—C5—C6 −1.1 (2) C9—C10—C11—C16 −100.39 (15)
C4—C5—C6—C1 0.6 (2) C9—C10—C11—C12 80.05 (15)
C4—C5—C6—C7 178.53 (13) C16—C11—C12—C13 0.8 (2)
C2—C1—C6—C5 0.2 (2) C10—C11—C12—C13 −179.64 (12)
C2—C1—C6—C7 −177.69 (13) C11—C12—C13—C14 −1.1 (2)
C5—C6—C7—C8 39.28 (18) C12—C13—C14—C15 0.9 (2)
C1—C6—C7—C8 −142.87 (13) C13—C14—C15—C16 −0.3 (2)
N2—N1—C8—O1 1.69 (19) C12—C11—C16—C15 −0.3 (2)
N2—N1—C8—C7 −179.17 (11) C10—C11—C16—C15 −179.84 (12)
C6—C7—C8—O1 62.54 (17) C14—C15—C16—C11 0.1 (2)
C6—C7—C8—N1 −116.59 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.867 (16) 1.970 (16) 2.8076 (15) 162.4 (16)
C10—H10A···O1i 0.971 (16) 2.465 (16) 3.3103 (18) 145.3 (13)
N1—H1N1···O2ii 0.907 (16) 1.948 (16) 2.8283 (15) 163.2 (15)
C7—H7A···O2ii 0.973 (16) 2.479 (16) 3.3209 (18) 144.8 (13)
C7—H7B···O2iii 1.00 (2) 2.56 (2) 3.4929 (19) 155.2 (13)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+2, −z; (iii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6773).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bredihhin, A. & Mäeorg, U. (2008). Tetrahedron, 64, 6788–6793.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Ling, L., Urichuk, L. J., Sloley, B. D., Coutts, R. T., Baker, G. B., Shan, J. J. & Pang, P. K. T. (2001). Bioorg. Med. Chem. Lett. 11, 2715–2717. [DOI] [PubMed]
  7. Magedov, I. V. & Smushkevich, Y. I. (1991). Synthesis, 10, 845–848.
  8. Ragnarsson, U. (2001). Chem. Soc. Rev. 30, 205–213.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019861/hb6773sup1.cif

e-68-o1680-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019861/hb6773Isup2.hkl

e-68-o1680-Isup2.hkl (169.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019861/hb6773Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES