Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1684. doi: 10.1107/S1600536812019903

Ethyl 4-anilino-3-nitro­benzoate

Yeong Keng Yoon a, Elumalai Manogaran b, Mohamed Ashraf Ali a, Suhana Arshad c, Ibrahim Abdul Razak c,*,
PMCID: PMC3379280  PMID: 22719478

Abstract

In the title compound, C15H14N2O4, the dihedral angle between the benzene and phenyl rings is 73.20 (6)°. An intra­molecular N—H⋯O hydrogen bond forms an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into a layer parallel to the bc plane.

Related literature  

For applications of nitro­phenyl­ene­amines, see: Stephane (2006); Glebowska et al. (2009); Remusat et al. (2004). For related structures, see: Mohdaidin et al. (2008); Zhang et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1684-scheme1.jpg

Experimental  

Crystal data  

  • C15H14N2O4

  • M r = 286.28

  • Monoclinic, Inline graphic

  • a = 10.6464 (2) Å

  • b = 9.9178 (2) Å

  • c = 14.7885 (2) Å

  • β = 120.244 (1)°

  • V = 1348.96 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.20 × 0.16 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.965, T max = 0.984

  • 17988 measured reflections

  • 4639 independent reflections

  • 3276 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.124

  • S = 1.04

  • 4639 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019903/is5128sup1.cif

e-68-o1684-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019903/is5128Isup2.hkl

e-68-o1684-Isup2.hkl (227.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019903/is5128Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4 0.859 (18) 2.00 (2) 2.6375 (17) 130.6 (17)
N1—H1N1⋯O2i 0.858 (17) 2.288 (16) 2.9411 (14) 133.0 (14)
C15—H15A⋯O2ii 0.93 2.45 3.342 (2) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University grants Nos. 1001/PFIZIK/811151 and 1001/PSK/8620012. The authors also thank Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia.

supplementary crystallographic information

Comment

In chemistry, nitrophenyleneamines are important building blocks for many pharmaceutical compounds. Phenylenediamine themselves are also used as composition in making dyes (Stephane, 2006), metallomesogens (Glebowska et al., 2009) as well as ligand precursors. Condensation of substituted ο-phenylenediamine with various diketones is then used in the preparation of a variety of pharmaceuticals (Remusat et al., 2004).

In the molecular structure (Fig. 1), an intramolecular N1—H1N1···O4 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The C1–C6 benzene ring [maximum deviation of 0.007 (1) Å at atoms C5 and C6] and C10–C15 phenyl ring [maximum deviation of 0.005 (2) Å at atom C12] make a dihedral angle of 73.20 (6)° with each other. Bond lengths and angles are within normal ranges and are comparable to related structures (Mohd. Maidin et al., 2008; Zhang et al., 2009).

The crystal packing is shown in Fig. 2. The intermolecular N1—H1N1···O2 and C15—H15A···O2 (Table 1) hydrogen bonds linked the molecules into a two-dimensional network parallel to the bc plane.

Experimental

Ethyl-4-fluro-3-nitro benzoate (1 g) in dichloromethane (20 ml) was added into the solution of aniline (0.51 g) and N,N-diisopropylethylamine (0.72 g) in dichloromethane (20 ml). The reaction mixture was stirred overnight at room temperature. After completion of the reaction, evidenced by TLC analysis. The reaction mixture was washed with water (10 ml × 2) and 10% Na2CO3 (10 ml × 2). The dichloromethane layer was collected and dried over Na2SO4 and evaporated in vacuo to yield the product. The product was recrystallised from ethyl acetate.

Refinement

N-bound H atom was located in a difference Fourier map and refined freely [N—H = 0.858 (17) Å]. Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular N—H···O hydrogen bond is shown by a dashed line.

Fig. 2.

Fig. 2.

A crystal packing diagram of the title compound, viewed along the b axis. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C15H14N2O4 F(000) = 600
Mr = 286.28 Dx = 1.410 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3629 reflections
a = 10.6464 (2) Å θ = 2.9–31.4°
b = 9.9178 (2) Å µ = 0.10 mm1
c = 14.7885 (2) Å T = 100 K
β = 120.244 (1)° Block, yellow
V = 1348.96 (4) Å3 0.35 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4639 independent reflections
Radiation source: fine-focus sealed tube 3276 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
φ and ω scans θmax = 31.9°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.965, Tmax = 0.984 k = −14→14
17988 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.2709P] where P = (Fo2 + 2Fc2)/3
4639 reflections (Δ/σ)max = 0.001
195 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.28632 (10) −0.12818 (8) 0.76247 (7) 0.01976 (19)
O2 0.46453 (10) 0.00161 (9) 0.76921 (7) 0.0212 (2)
O3 0.66947 (10) 0.34436 (10) 1.03221 (8) 0.0273 (2)
O4 0.55970 (10) 0.42674 (9) 1.10945 (8) 0.0228 (2)
N1 0.33488 (11) 0.29963 (10) 1.09858 (8) 0.0181 (2)
N2 0.56820 (11) 0.34349 (10) 1.05006 (8) 0.0184 (2)
C1 0.46344 (13) 0.16060 (11) 0.92632 (9) 0.0165 (2)
H1A 0.5353 0.1764 0.9095 0.020*
C2 0.45671 (12) 0.24143 (11) 1.00074 (9) 0.0154 (2)
C3 0.34771 (13) 0.22195 (11) 1.02854 (9) 0.0153 (2)
C4 0.24935 (13) 0.11392 (12) 0.97700 (9) 0.0169 (2)
H4A 0.1767 0.0968 0.9929 0.020*
C5 0.25813 (13) 0.03416 (12) 0.90452 (10) 0.0173 (2)
H5A 0.1924 −0.0362 0.8730 0.021*
C6 0.36523 (13) 0.05748 (11) 0.87723 (9) 0.0161 (2)
C7 0.37913 (13) −0.02319 (12) 0.79882 (10) 0.0173 (2)
C8 0.29118 (15) −0.20792 (13) 0.68146 (11) 0.0239 (3)
H8A 0.3826 −0.2563 0.7107 0.029*
H8B 0.2825 −0.1497 0.6259 0.029*
C9 0.16782 (18) −0.30447 (14) 0.63980 (12) 0.0324 (3)
H9A 0.1677 −0.3582 0.5858 0.049*
H9B 0.0780 −0.2555 0.6114 0.049*
H9C 0.1780 −0.3620 0.6953 0.049*
C10 0.23046 (13) 0.27774 (12) 1.13077 (10) 0.0175 (2)
C11 0.11792 (14) 0.37011 (13) 1.10012 (11) 0.0227 (3)
H11A 0.1090 0.4418 1.0567 0.027*
C12 0.01887 (15) 0.35537 (14) 1.13428 (12) 0.0281 (3)
H12A −0.0559 0.4176 1.1143 0.034*
C13 0.03126 (15) 0.24804 (14) 1.19810 (12) 0.0287 (3)
H13A −0.0359 0.2374 1.2202 0.034*
C14 0.14412 (16) 0.15626 (14) 1.22907 (12) 0.0269 (3)
H14A 0.1528 0.0846 1.2724 0.032*
C15 0.24447 (15) 0.17090 (12) 1.19555 (11) 0.0218 (3)
H15A 0.3202 0.1095 1.2165 0.026*
H1N1 0.3899 (19) 0.3693 (16) 1.1227 (13) 0.030 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0247 (5) 0.0208 (4) 0.0188 (5) 0.0008 (3) 0.0147 (4) −0.0030 (3)
O2 0.0237 (5) 0.0249 (4) 0.0222 (5) 0.0049 (3) 0.0169 (4) 0.0034 (4)
O3 0.0211 (5) 0.0350 (5) 0.0342 (6) −0.0065 (4) 0.0202 (4) −0.0053 (4)
O4 0.0259 (5) 0.0229 (4) 0.0250 (5) −0.0052 (4) 0.0169 (4) −0.0054 (4)
N1 0.0189 (5) 0.0194 (5) 0.0218 (6) −0.0037 (4) 0.0146 (4) −0.0049 (4)
N2 0.0176 (5) 0.0211 (5) 0.0193 (5) −0.0010 (4) 0.0113 (4) 0.0013 (4)
C1 0.0172 (5) 0.0188 (5) 0.0176 (6) 0.0039 (4) 0.0119 (5) 0.0048 (4)
C2 0.0151 (5) 0.0172 (5) 0.0163 (6) 0.0000 (4) 0.0096 (5) 0.0011 (4)
C3 0.0153 (5) 0.0176 (5) 0.0153 (6) 0.0018 (4) 0.0092 (4) 0.0011 (4)
C4 0.0157 (5) 0.0211 (5) 0.0172 (6) −0.0009 (4) 0.0107 (5) −0.0005 (4)
C5 0.0176 (5) 0.0191 (5) 0.0167 (6) −0.0001 (4) 0.0098 (5) −0.0005 (4)
C6 0.0182 (5) 0.0187 (5) 0.0146 (6) 0.0036 (4) 0.0107 (5) 0.0025 (4)
C7 0.0195 (6) 0.0183 (5) 0.0162 (6) 0.0050 (4) 0.0106 (5) 0.0037 (4)
C8 0.0314 (7) 0.0249 (6) 0.0208 (7) 0.0044 (5) 0.0171 (6) −0.0038 (5)
C9 0.0428 (9) 0.0279 (7) 0.0307 (8) −0.0050 (6) 0.0217 (7) −0.0078 (6)
C10 0.0157 (5) 0.0222 (5) 0.0183 (6) −0.0038 (4) 0.0113 (5) −0.0063 (5)
C11 0.0181 (6) 0.0273 (6) 0.0227 (7) 0.0004 (5) 0.0104 (5) −0.0031 (5)
C12 0.0181 (6) 0.0356 (7) 0.0334 (8) −0.0002 (5) 0.0151 (6) −0.0101 (6)
C13 0.0256 (7) 0.0362 (7) 0.0356 (8) −0.0118 (6) 0.0239 (6) −0.0167 (6)
C14 0.0348 (8) 0.0266 (6) 0.0314 (8) −0.0086 (5) 0.0256 (7) −0.0073 (6)
C15 0.0245 (6) 0.0217 (6) 0.0259 (7) −0.0012 (5) 0.0176 (6) −0.0033 (5)

Geometric parameters (Å, º)

O1—C7 1.3470 (15) C6—C7 1.4764 (16)
O1—C8 1.4582 (14) C8—C9 1.485 (2)
O2—C7 1.2165 (13) C8—H8A 0.9700
O3—N2 1.2325 (12) C8—H8B 0.9700
O4—N2 1.2415 (13) C9—H9A 0.9600
N1—C3 1.3518 (14) C9—H9B 0.9600
N1—C10 1.4293 (14) C9—H9C 0.9600
N1—H1N1 0.858 (17) C10—C15 1.3852 (17)
N2—C2 1.4468 (15) C10—C11 1.3904 (17)
C1—C6 1.3789 (17) C11—C12 1.3875 (17)
C1—C2 1.3923 (15) C11—H11A 0.9300
C1—H1A 0.9300 C12—C13 1.384 (2)
C2—C3 1.4262 (15) C12—H12A 0.9300
C3—C4 1.4218 (16) C13—C14 1.388 (2)
C4—C5 1.3727 (16) C13—H13A 0.9300
C4—H4A 0.9300 C14—C15 1.3935 (17)
C5—C6 1.4071 (15) C14—H14A 0.9300
C5—H5A 0.9300 C15—H15A 0.9300
C7—O1—C8 115.13 (9) O1—C8—H8A 110.2
C3—N1—C10 124.35 (10) C9—C8—H8A 110.2
C3—N1—H1N1 117.8 (11) O1—C8—H8B 110.2
C10—N1—H1N1 117.8 (11) C9—C8—H8B 110.2
O3—N2—O4 122.02 (11) H8A—C8—H8B 108.5
O3—N2—C2 118.75 (10) C8—C9—H9A 109.5
O4—N2—C2 119.23 (9) C8—C9—H9B 109.5
C6—C1—C2 121.06 (10) H9A—C9—H9B 109.5
C6—C1—H1A 119.5 C8—C9—H9C 109.5
C2—C1—H1A 119.5 H9A—C9—H9C 109.5
C1—C2—C3 121.55 (11) H9B—C9—H9C 109.5
C1—C2—N2 116.46 (10) C15—C10—C11 120.29 (11)
C3—C2—N2 121.97 (10) C15—C10—N1 121.04 (11)
N1—C3—C4 120.59 (10) C11—C10—N1 118.58 (11)
N1—C3—C2 123.68 (11) C12—C11—C10 120.00 (13)
C4—C3—C2 115.72 (10) C12—C11—H11A 120.0
C5—C4—C3 122.11 (10) C10—C11—H11A 120.0
C5—C4—H4A 118.9 C13—C12—C11 120.03 (13)
C3—C4—H4A 118.9 C13—C12—H12A 120.0
C4—C5—C6 120.86 (11) C11—C12—H12A 120.0
C4—C5—H5A 119.6 C12—C13—C14 119.90 (11)
C6—C5—H5A 119.6 C12—C13—H13A 120.0
C1—C6—C5 118.69 (10) C14—C13—H13A 120.0
C1—C6—C7 117.78 (10) C13—C14—C15 120.36 (13)
C5—C6—C7 123.53 (11) C13—C14—H14A 119.8
O2—C7—O1 122.94 (11) C15—C14—H14A 119.8
O2—C7—C6 124.18 (11) C10—C15—C14 119.41 (12)
O1—C7—C6 112.88 (9) C10—C15—H15A 120.3
O1—C8—C9 107.49 (10) C14—C15—H15A 120.3
C6—C1—C2—C3 −0.58 (18) C4—C5—C6—C7 −179.04 (11)
C6—C1—C2—N2 177.85 (11) C8—O1—C7—O2 −2.29 (17)
O3—N2—C2—C1 −7.34 (16) C8—O1—C7—C6 177.49 (10)
O4—N2—C2—C1 173.15 (11) C1—C6—C7—O2 −5.67 (18)
O3—N2—C2—C3 171.07 (11) C5—C6—C7—O2 174.66 (12)
O4—N2—C2—C3 −8.44 (17) C1—C6—C7—O1 174.56 (10)
C10—N1—C3—C4 3.33 (18) C5—C6—C7—O1 −5.11 (17)
C10—N1—C3—C2 −177.07 (11) C7—O1—C8—C9 −171.43 (11)
C1—C2—C3—N1 −178.51 (11) C3—N1—C10—C15 72.36 (17)
N2—C2—C3—N1 3.15 (18) C3—N1—C10—C11 −110.92 (14)
C1—C2—C3—C4 1.12 (17) C15—C10—C11—C12 −0.1 (2)
N2—C2—C3—C4 −177.22 (10) N1—C10—C11—C12 −176.86 (12)
N1—C3—C4—C5 179.17 (12) C10—C11—C12—C13 −0.6 (2)
C2—C3—C4—C5 −0.47 (17) C11—C12—C13—C14 0.9 (2)
C3—C4—C5—C6 −0.72 (19) C12—C13—C14—C15 −0.5 (2)
C2—C1—C6—C5 −0.65 (18) C11—C10—C15—C14 0.49 (19)
C2—C1—C6—C7 179.67 (11) N1—C10—C15—C14 177.15 (12)
C4—C5—C6—C1 1.29 (18) C13—C14—C15—C10 −0.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O4 0.859 (18) 2.00 (2) 2.6375 (17) 130.6 (17)
N1—H1N1···O2i 0.858 (17) 2.288 (16) 2.9411 (14) 133.0 (14)
C15—H15A···O2ii 0.93 2.45 3.342 (2) 160

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5128).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Glebowska, A., Przybylski, P., Winek, M., Krzyczkowska, P., Krowczynski, A., Szydlowska, J., Pociecha, D. & Gorecka, E. (2009). J. Mater. Chem. 19, 1395–1398.
  5. Mohd. Maidin, S. M., Abdul Rahim, A. S., Abdul Hamid, S., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1501–o1502. [DOI] [PMC free article] [PubMed]
  6. Remusat, V., Terme, T., Gellis, A., Rathelot, P. & Vanelle, P. (2004). J. Heterocycl. Chem. 41, 221–225.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Stephane, S. (2006). US Patent 20060005323.
  10. Zhang, G.-H., Wu, Y.-Z., Li, H.-Y., Liu, B.-N. & Guo, C. (2009). Acta Cryst. E65, o1380. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019903/is5128sup1.cif

e-68-o1684-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019903/is5128Isup2.hkl

e-68-o1684-Isup2.hkl (227.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019903/is5128Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES