Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1686. doi: 10.1107/S1600536812020090

4-Phenyl-1H-imidazole-2(3H)-thione

Anita M Owczarzak a, Maciej Kubicki a,*
PMCID: PMC3379282  PMID: 22719480

Abstract

In the asymmetric unit of the title compound, C9H8N2S, there are four symmetry-independent mol­ecules (Z′ = 4). The geometrical features of these mol­ecules are quite similar: in the normal probability plots the R 2 correlation factors for bond lengths and angles are generally around 0.95. The twist angles between the imidazole and phenyl rings (which are planar within 3σ) range from 9.0 (6) to 13.1 (5)°. In the crystal, pairs of independent molecules are joined by linear N—H⋯S and weak C—H⋯S hydrogen bonds, forming infinite ribbons, of the type ∼ABABAB∼ and ∼CDCDCD∼, propagating along [110]. Second-order hydrogen-bonded R 2 2(8) rings are formed via inter­weaving infinite C 2 2(8) chains.

Related literature  

For related structures, see: Conde et al. (1977); Raper et al. (1984). For general background to thio­amides, see: Martindale (1982); Hussain et al. (1990); Buxeraud (1995). For normal probability plots, see: Abrahams & Keve (1971); Inter­national Tables for X-ray Crystallography (1974). For a description of the Cambridge Structural Database, see: Allen (2002). For graph-set notation, see: Bernstein et al. (1995); Etter et al. (1990).graphic file with name e-68-o1686-scheme1.jpg

Experimental  

Crystal data  

  • C9H8N2S

  • M r = 176.23

  • Monoclinic, Inline graphic

  • a = 11.7578 (5) Å

  • b = 11.8071 (5) Å

  • c = 25.1339 (18) Å

  • β = 91.858 (6)°

  • V = 3487.4 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.2 × 0.16 × 0.03 mm

Data collection  

  • Agilent Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.928, T max = 1.000

  • 11682 measured reflections

  • 5247 independent reflections

  • 4168 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.165

  • S = 1.08

  • 5247 reflections

  • 433 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983), 1447 Friedel pairs

  • Flack parameter: 0.01 (13)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020090/nk2157sup1.cif

e-68-o1686-sup1.cif (34.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020090/nk2157Isup2.hkl

e-68-o1686-Isup2.hkl (251.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020090/nk2157Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯S2B 0.86 2.44 3.274 (6) 163
N3A—H3A⋯S2Bi 0.86 2.50 3.350 (5) 172
C42A—H42A⋯S2Bi 0.93 2.85 3.723 (9) 156
N1B—H1B⋯S2Aii 0.86 2.46 3.290 (5) 163
N3B—H3B⋯S2A 0.86 2.48 3.343 (5) 176
C42B—H42B⋯S2A 0.93 2.79 3.686 (9) 161
N1C—H1C⋯S2D 0.86 2.45 3.288 (5) 166
N3C—H3C⋯S2Dii 0.86 2.50 3.348 (5) 172
C42C—H42C⋯S2Dii 0.93 2.89 3.741 (8) 153
N1D—H1D⋯S2Ci 0.86 2.43 3.271 (6) 166
N3D—H3D⋯S2C 0.86 2.50 3.353 (6) 172
C42D—H42D⋯S2C 0.93 2.85 3.766 (9) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Heterocyclic thioamides are an important class of N, S-donor ligands, which display both hard and soft donor sites. They form a huge variety of coordination compounds and consequently have wide-ranging applications: for instance, as analytical reagents or metal corrosion inhibitors. They are also used as biologically active molecules (e.g. Hussain et al., 1990, and references therein). Among the anti-thyroidal agents most widely used for the treatment of Graves' disease are some derivatives of imidazole-2-thiol as N-methylimidazoline-2-thione (Methimazole) as well as other thioamides, e.g. 3-methyl-2-thioxo-4-imidazoline-1-carboxylate (Carbimazole) and propylthiouracil (Martindale, 1982, Buxeraud, 1995). Here we present the crystal structure of simple thioamide, 4-phenyl-1,3-dihydro-2H-imidazole-2-thione (1, Scheme 1), which turned out to crystallize with Z'=4.

The Cambridge Structural Database (Allen, 2002) contains only a handful of 1,3-dihydroimidazole-2-thione derivatives. These are mainly S-metal complexes and few simple organic derivatives, for instance 1,3-dihydro-2H-imidazole-2-thione hydrate (Raper et al., 1984) and 4-formyl-1,3-dihydro-2H-imidazole-2-thione (Conde et al., 1977).

The asymmetric part of the unit cell of 1 contains four independent molecules, Fig. 1 shows one of them. These molecules are similar; the results of the normal probability plot analysis (International Tables for X-ray Crystallography, 1974; Abrahams & Keve, 1971) for bond lengths and angles show that there are no systematical differences between the molecules, and the actual differences are only of statistical nature: R2 correlation factors for bond lengths and angles are generally around 0.95.

Overall conformation of the molecules can be described here by the dihedral angles between two almost perfectly planar (within 3 s.u.'s) rings, imidazole and phenyl. These angles are relatively small - thanks partially at least to the lack of the sterical hindrance - and range from 9.0 (6)° for molecule B to 13.1 (5)° for molecule C. The bond length and angles are typical, with the C—S bond distance confirming its double-bond character, the mean value of this length is 1.694 (4) Å.

In the crystal structure the pairs of molecules A—B and C—D create identical but independent motifs. They are joined into infinite ribbons (along [110]) by means of relatively short and linear N—H···S hydrogen bonds (Table 1, Fig. 2), and additionally by weaker, secondary C—H···S hydrogen bonds. Using graph-set notation (Etter, et al., 1990, Bernstein et al., 1995), one can identify the second-order rings R22(8) which are made by interweaving C22(8) chains. These almost independent ribbons combine together to make the overall three-dimensional structure (Fig. 3).

Experimental

The title compound was prepared by adding hydrochloric acid to acetonitrile solution of 4-phenyl-imidazole-2-thiol in molar ratio 1:1. After a few minutes colourless, thin crystals of 1, suitable for single-crystal X-ray analysis appeared and were filtered off.

Refinement

Hydrogen atoms were put in the idealized positions, and refined as riding model. Their isotropic thermal parameters were set at 1.2 times Ueq's of appropriate carrier atoms.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid representation of the molecule 1 A,The ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The hydrogen-bonded ribbon of molecules A and B (molecules C and D are joined into almost identical structure). Hydrogen bonds are shown as dashed lines, symmetry codes:; (i) -1/2 + x,-1/2 + y,z; (ii) 1/2 + x,1/2 + y,z..

Fig. 3.

Fig. 3.

The crystal packing as seen approximately along c-direction, hydrogen bonds are drawn as dashed lines. Symmetry-independent molecules are shown with different colours.

Crystal data

C9H8N2S F(000) = 1472
Mr = 176.23 Dx = 1.343 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 4788 reflections
a = 11.7578 (5) Å θ = 2.4–26.9°
b = 11.8071 (5) Å µ = 0.31 mm1
c = 25.1339 (18) Å T = 295 K
β = 91.858 (6)° Plate, yellow
V = 3487.4 (3) Å3 0.2 × 0.16 × 0.03 mm
Z = 16

Data collection

Xcalibur, Eos diffractometer 5247 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4168 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
Detector resolution: 16.1544 pixels mm-1 θmax = 27.0°, θmin = 2.5°
ω–scan h = −14→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −14→14
Tmin = 0.928, Tmax = 1.000 l = −30→30
11682 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.073P)2 + 5.346P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
5247 reflections Δρmax = 0.80 e Å3
433 parameters Δρmin = −0.27 e Å3
2 restraints Absolute structure: Flack (1983), 1447 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (13)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.4989 (5) 0.4546 (4) 0.8218 (2) 0.0444 (12)
H1A 0.4424 0.4129 0.8115 0.053*
C2A 0.5332 (5) 0.5485 (5) 0.7969 (3) 0.0345 (13)
S2A 0.47435 (12) 0.60428 (14) 0.74045 (7) 0.0458 (4)
N3A 0.6236 (4) 0.5869 (4) 0.8257 (2) 0.0371 (11)
H3A 0.6619 0.6464 0.8179 0.045*
C4A 0.6471 (5) 0.5183 (5) 0.8695 (2) 0.0360 (13)
C41A 0.7430 (6) 0.5375 (5) 0.9085 (3) 0.0411 (15)
C42A 0.8265 (8) 0.6105 (8) 0.8996 (4) 0.070 (3)
H42A 0.8229 0.6528 0.8684 0.084*
C43A 0.9180 (9) 0.6267 (9) 0.9345 (4) 0.079 (3)
H43A 0.9745 0.6785 0.9263 0.095*
C44A 0.9258 (7) 0.5679 (8) 0.9802 (4) 0.067 (2)
H44A 0.9857 0.5797 1.0046 0.080*
C45A 0.8436 (9) 0.4911 (8) 0.9894 (4) 0.072 (3)
H45A 0.8495 0.4460 1.0197 0.086*
C46A 0.7474 (7) 0.4777 (7) 0.9534 (3) 0.0558 (19)
H46A 0.6890 0.4280 0.9613 0.067*
C5A 0.5680 (6) 0.4349 (5) 0.8665 (3) 0.0428 (14)
H5A 0.5613 0.3750 0.8902 0.051*
N1B 0.0966 (4) 0.3495 (5) 0.7179 (2) 0.0435 (13)
H1B 0.0559 0.2940 0.7286 0.052*
C2B 0.1929 (5) 0.3860 (5) 0.7428 (2) 0.0378 (14)
S2B 0.25122 (12) 0.33365 (14) 0.79993 (7) 0.0466 (4)
N3B 0.2285 (4) 0.4711 (4) 0.7131 (2) 0.0358 (11)
H3B 0.2896 0.5091 0.7199 0.043*
C4B 0.1546 (5) 0.4916 (5) 0.6695 (2) 0.0348 (13)
C41B 0.1702 (6) 0.5816 (6) 0.6307 (3) 0.0422 (15)
C42B 0.2505 (8) 0.6634 (9) 0.6382 (4) 0.076 (3)
H42B 0.2988 0.6638 0.6682 0.091*
C43B 0.2579 (9) 0.7492 (9) 0.5979 (5) 0.096 (4)
H43B 0.3120 0.8059 0.6032 0.116*
C44B 0.1938 (8) 0.7536 (9) 0.5539 (4) 0.062 (2)
H44B 0.2034 0.8092 0.5283 0.075*
C45B 0.1127 (9) 0.6719 (8) 0.5484 (4) 0.076 (3)
H45B 0.0639 0.6736 0.5186 0.091*
C46B 0.0997 (8) 0.5848 (7) 0.5859 (3) 0.067 (2)
H46B 0.0439 0.5298 0.5805 0.081*
C5B 0.0719 (6) 0.4130 (5) 0.6731 (3) 0.0442 (15)
H5B 0.0098 0.4034 0.6496 0.053*
N1C 0.5331 (4) 0.2879 (4) 0.7138 (2) 0.0469 (13)
H1C 0.5905 0.3287 0.7238 0.056*
C2C 0.4983 (5) 0.1952 (5) 0.7392 (3) 0.0364 (13)
S2C 0.55718 (13) 0.14044 (14) 0.79617 (7) 0.0481 (4)
N3C 0.4080 (4) 0.1579 (4) 0.7113 (2) 0.0368 (11)
H3C 0.3689 0.0991 0.7192 0.044*
C4C 0.3853 (5) 0.2275 (5) 0.6673 (2) 0.0376 (14)
C41C 0.2895 (5) 0.2125 (6) 0.6298 (3) 0.0425 (15)
C42C 0.1987 (7) 0.1387 (7) 0.6398 (3) 0.053 (2)
H42C 0.1989 0.0963 0.6710 0.064*
C43C 0.1101 (8) 0.1297 (8) 0.6034 (4) 0.074 (3)
H43C 0.0504 0.0803 0.6099 0.089*
C44C 0.1083 (9) 0.1948 (7) 0.5560 (4) 0.070 (3)
H44C 0.0477 0.1890 0.5314 0.084*
C45C 0.1965 (7) 0.2658 (8) 0.5470 (3) 0.0518 (19)
H45C 0.1962 0.3091 0.5161 0.062*
C46C 0.2816 (7) 0.2737 (7) 0.5813 (3) 0.055 (2)
H46C 0.3408 0.3226 0.5735 0.066*
C5C 0.4655 (6) 0.3088 (6) 0.6699 (3) 0.0482 (16)
H5C 0.4733 0.3683 0.6461 0.058*
N1D 0.9343 (5) 0.3980 (5) 0.8200 (2) 0.0492 (14)
H1D 0.9739 0.4548 0.8099 0.059*
C2D 0.8402 (5) 0.3599 (5) 0.7950 (3) 0.0371 (13)
S2D 0.77977 (13) 0.41209 (14) 0.73786 (7) 0.0503 (4)
N3D 0.8053 (4) 0.2707 (4) 0.8242 (2) 0.0398 (12)
H3D 0.7458 0.2307 0.8168 0.048*
C4D 0.8767 (5) 0.2527 (5) 0.8668 (2) 0.0381 (14)
C41D 0.8657 (6) 0.1604 (6) 0.9059 (3) 0.0421 (15)
C42D 0.7813 (7) 0.0797 (7) 0.9028 (3) 0.061 (2)
H42D 0.7277 0.0843 0.8748 0.073*
C43D 0.7718 (9) −0.0058 (9) 0.9380 (4) 0.084 (3)
H43D 0.7117 −0.0570 0.9356 0.101*
C44D 0.8559 (8) −0.0141 (8) 0.9782 (4) 0.064 (2)
H44D 0.8535 −0.0735 1.0024 0.077*
C45D 0.9391 (7) 0.0611 (7) 0.9825 (3) 0.054 (2)
H45D 0.9929 0.0559 1.0103 0.065*
C46D 0.9459 (7) 0.1450 (7) 0.9465 (3) 0.0522 (19)
H46D 1.0072 0.1947 0.9491 0.063*
C5D 0.9591 (6) 0.3327 (6) 0.8646 (3) 0.0519 (17)
H5D 1.0205 0.3419 0.8884 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.047 (3) 0.034 (3) 0.051 (3) −0.008 (2) −0.005 (3) 0.003 (2)
C2A 0.026 (3) 0.029 (3) 0.049 (3) −0.008 (2) 0.001 (3) 0.009 (2)
S2A 0.0409 (9) 0.0470 (9) 0.0487 (9) −0.0178 (7) −0.0117 (7) 0.0096 (7)
N3A 0.036 (3) 0.036 (3) 0.040 (3) −0.001 (2) −0.001 (2) 0.009 (2)
C4A 0.036 (3) 0.035 (3) 0.037 (3) −0.003 (3) −0.001 (2) 0.003 (2)
C41A 0.044 (4) 0.040 (3) 0.039 (4) 0.006 (3) 0.002 (3) 0.006 (3)
C42A 0.062 (6) 0.087 (6) 0.059 (5) 0.002 (5) −0.031 (4) 0.014 (5)
C43A 0.076 (6) 0.090 (6) 0.070 (6) −0.033 (5) −0.015 (5) 0.023 (5)
C44A 0.042 (4) 0.090 (6) 0.067 (5) −0.015 (4) −0.016 (4) 0.011 (5)
C45A 0.089 (7) 0.064 (5) 0.061 (5) −0.012 (5) −0.029 (5) 0.020 (4)
C46A 0.046 (4) 0.071 (5) 0.049 (4) −0.009 (4) −0.014 (3) 0.007 (4)
C5A 0.045 (4) 0.043 (3) 0.040 (3) −0.010 (3) 0.000 (3) 0.002 (3)
N1B 0.035 (3) 0.043 (3) 0.052 (3) −0.021 (2) −0.004 (2) 0.002 (2)
C2B 0.039 (3) 0.031 (3) 0.044 (3) 0.002 (3) 0.003 (3) 0.000 (3)
S2B 0.0386 (9) 0.0488 (9) 0.0516 (9) −0.0184 (7) −0.0101 (7) 0.0157 (7)
N3B 0.023 (2) 0.039 (3) 0.045 (3) −0.011 (2) 0.000 (2) −0.005 (2)
C4B 0.035 (3) 0.039 (3) 0.031 (3) 0.002 (3) −0.002 (2) 0.002 (2)
C41B 0.037 (4) 0.045 (4) 0.044 (4) 0.000 (3) −0.005 (3) −0.001 (3)
C42B 0.080 (7) 0.088 (6) 0.058 (5) −0.014 (5) −0.036 (5) 0.041 (5)
C43B 0.082 (7) 0.078 (6) 0.128 (10) −0.036 (5) −0.018 (7) 0.038 (6)
C44B 0.062 (5) 0.072 (6) 0.052 (5) 0.009 (4) −0.001 (4) 0.022 (4)
C45B 0.107 (8) 0.077 (6) 0.042 (4) −0.004 (6) −0.030 (5) 0.024 (4)
C46B 0.082 (6) 0.066 (5) 0.052 (5) −0.011 (4) −0.013 (4) 0.013 (4)
C5B 0.042 (4) 0.043 (4) 0.047 (4) −0.011 (3) −0.011 (3) 0.001 (3)
N1C 0.039 (3) 0.042 (3) 0.059 (4) −0.018 (2) −0.002 (3) 0.005 (3)
C2C 0.031 (3) 0.035 (3) 0.042 (3) −0.006 (2) −0.003 (3) −0.007 (3)
S2C 0.0442 (10) 0.0442 (9) 0.0550 (10) −0.0178 (8) −0.0112 (7) 0.0072 (8)
N3C 0.029 (3) 0.035 (2) 0.046 (3) −0.014 (2) 0.002 (2) −0.007 (2)
C4C 0.036 (3) 0.036 (3) 0.041 (3) 0.001 (3) 0.005 (3) −0.003 (3)
C41C 0.033 (3) 0.049 (4) 0.046 (4) −0.009 (3) −0.006 (3) −0.007 (3)
C42C 0.052 (5) 0.057 (5) 0.051 (4) −0.017 (3) 0.000 (4) 0.020 (4)
C43C 0.052 (5) 0.074 (6) 0.094 (7) −0.024 (4) −0.024 (5) 0.016 (5)
C44C 0.093 (7) 0.059 (5) 0.055 (5) −0.005 (5) −0.038 (5) 0.008 (4)
C45C 0.047 (4) 0.069 (5) 0.039 (4) −0.008 (4) 0.001 (3) 0.005 (3)
C46C 0.063 (5) 0.051 (4) 0.052 (4) −0.006 (3) 0.010 (4) 0.016 (3)
C5C 0.050 (4) 0.046 (4) 0.049 (4) −0.009 (3) −0.004 (3) 0.012 (3)
N1D 0.043 (3) 0.049 (3) 0.054 (4) −0.008 (3) −0.004 (3) 0.008 (3)
C2D 0.022 (3) 0.040 (3) 0.050 (3) −0.011 (2) 0.005 (2) −0.006 (3)
S2D 0.0433 (10) 0.0495 (10) 0.0578 (10) −0.0173 (7) −0.0051 (8) 0.0106 (8)
N3D 0.039 (3) 0.034 (3) 0.046 (3) −0.006 (2) 0.004 (2) 0.004 (2)
C4D 0.033 (3) 0.040 (3) 0.042 (3) 0.000 (3) 0.002 (3) −0.009 (3)
C41D 0.043 (4) 0.039 (3) 0.044 (4) −0.001 (3) 0.006 (3) −0.003 (3)
C42D 0.061 (5) 0.059 (5) 0.062 (5) −0.024 (4) −0.022 (4) 0.017 (4)
C43D 0.085 (7) 0.091 (6) 0.074 (6) −0.043 (5) −0.034 (5) 0.039 (5)
C44D 0.073 (6) 0.055 (5) 0.064 (5) 0.003 (4) 0.010 (4) 0.019 (4)
C45D 0.036 (4) 0.075 (5) 0.050 (4) 0.004 (4) 0.005 (3) −0.006 (4)
C46D 0.043 (4) 0.059 (4) 0.055 (4) −0.012 (3) −0.004 (3) 0.000 (3)
C5D 0.045 (4) 0.054 (4) 0.055 (4) −0.012 (3) −0.011 (3) 0.006 (3)

Geometric parameters (Å, º)

N1A—C2A 1.342 (7) N1C—C2C 1.338 (8)
N1A—C5A 1.385 (8) N1C—C5C 1.361 (9)
N1A—H1A 0.8600 N1C—H1C 0.8600
C2A—N3A 1.345 (8) C2C—N3C 1.329 (8)
C2A—S2A 1.691 (6) C2C—S2C 1.698 (7)
N3A—C4A 1.388 (8) N3C—C4C 1.397 (8)
N3A—H3A 0.8600 N3C—H3C 0.8600
C4A—C5A 1.355 (9) C4C—C5C 1.345 (9)
C4A—C41A 1.487 (9) C4C—C41C 1.456 (9)
C41A—C46A 1.331 (10) C41C—C42C 1.407 (9)
C41A—C42A 1.331 (11) C41C—C46C 1.416 (10)
C42A—C43A 1.378 (13) C42C—C43C 1.368 (13)
C42A—H42A 0.9300 C42C—H42C 0.9300
C43A—C44A 1.343 (14) C43C—C44C 1.419 (13)
C43A—H43A 0.9300 C43C—H43C 0.9300
C44A—C45A 1.351 (12) C44C—C45C 1.358 (12)
C44A—H44A 0.9300 C44C—H44C 0.9300
C45A—C46A 1.434 (12) C45C—C46C 1.303 (12)
C45A—H45A 0.9300 C45C—H45C 0.9300
C46A—H46A 0.9300 C46C—H46C 0.9300
C5A—H5A 0.9300 C5C—H5C 0.9300
N1B—C2B 1.346 (8) N1D—C2D 1.333 (8)
N1B—C5B 1.377 (8) N1D—C5D 1.383 (9)
N1B—H1B 0.8600 N1D—H1D 0.8600
C2B—N3B 1.328 (8) C2D—N3D 1.355 (8)
C2B—S2B 1.688 (6) C2D—S2D 1.697 (7)
N3B—C4B 1.397 (8) N3D—C4D 1.355 (8)
N3B—H3B 0.8600 N3D—H3D 0.8600
C4B—C5B 1.349 (9) C4D—C5D 1.355 (9)
C4B—C41B 1.458 (9) C4D—C41D 1.476 (9)
C41B—C42B 1.359 (12) C41D—C42D 1.377 (10)
C41B—C46B 1.377 (11) C41D—C46D 1.378 (11)
C42B—C43B 1.437 (13) C42D—C43D 1.350 (12)
C42B—H42B 0.9300 C42D—H42D 0.9300
C43B—C44B 1.318 (14) C43D—C44D 1.393 (13)
C43B—H43B 0.9300 C43D—H43D 0.9300
C44B—C45B 1.360 (13) C44D—C45D 1.323 (12)
C44B—H44B 0.9300 C44D—H44D 0.9300
C45B—C46B 1.407 (12) C45D—C46D 1.345 (12)
C45B—H45B 0.9300 C45D—H45D 0.9300
C46B—H46B 0.9300 C46D—H46D 0.9300
C5B—H5B 0.9300 C5D—H5D 0.9300
C2A—N1A—C5A 109.9 (5) C2C—N1C—C5C 110.9 (5)
C2A—N1A—H1A 125.0 C2C—N1C—H1C 124.6
C5A—N1A—H1A 125.0 C5C—N1C—H1C 124.6
N1A—C2A—N3A 105.7 (5) N3C—C2C—N1C 105.7 (6)
N1A—C2A—S2A 126.3 (5) N3C—C2C—S2C 128.0 (5)
N3A—C2A—S2A 127.9 (4) N1C—C2C—S2C 126.3 (5)
C2A—N3A—C4A 111.4 (5) C2C—N3C—C4C 110.6 (5)
C2A—N3A—H3A 124.3 C2C—N3C—H3C 124.7
C4A—N3A—H3A 124.3 C4C—N3C—H3C 124.7
C5A—C4A—N3A 105.1 (6) C5C—C4C—N3C 105.4 (6)
C5A—C4A—C41A 130.7 (6) C5C—C4C—C41C 130.1 (6)
N3A—C4A—C41A 124.2 (6) N3C—C4C—C41C 124.4 (6)
C46A—C41A—C42A 118.5 (8) C42C—C41C—C46C 116.1 (7)
C46A—C41A—C4A 119.1 (7) C42C—C41C—C4C 122.4 (7)
C42A—C41A—C4A 122.4 (6) C46C—C41C—C4C 121.5 (6)
C41A—C42A—C43A 123.3 (9) C43C—C42C—C41C 119.7 (7)
C41A—C42A—H42A 118.4 C43C—C42C—H42C 120.2
C43A—C42A—H42A 118.4 C41C—C42C—H42C 120.2
C44A—C43A—C42A 120.1 (9) C42C—C43C—C44C 120.6 (8)
C44A—C43A—H43A 119.9 C42C—C43C—H43C 119.7
C42A—C43A—H43A 119.9 C44C—C43C—H43C 119.7
C43A—C44A—C45A 117.7 (9) C45C—C44C—C43C 118.9 (8)
C43A—C44A—H44A 121.2 C45C—C44C—H44C 120.5
C45A—C44A—H44A 121.2 C43C—C44C—H44C 120.5
C44A—C45A—C46A 121.3 (9) C46C—C45C—C44C 120.5 (8)
C44A—C45A—H45A 119.3 C46C—C45C—H45C 119.7
C46A—C45A—H45A 119.3 C44C—C45C—H45C 119.7
C41A—C46A—C45A 119.0 (8) C45C—C46C—C41C 124.1 (8)
C41A—C46A—H46A 120.5 C45C—C46C—H46C 118.0
C45A—C46A—H46A 120.5 C41C—C46C—H46C 118.0
C4A—C5A—N1A 107.9 (6) C4C—C5C—N1C 107.5 (6)
C4A—C5A—H5A 126.1 C4C—C5C—H5C 126.3
N1A—C5A—H5A 126.1 N1C—C5C—H5C 126.3
C2B—N1B—C5B 111.1 (5) C2D—N1D—C5D 110.1 (6)
C2B—N1B—H1B 124.5 C2D—N1D—H1D 125.0
C5B—N1B—H1B 124.5 C5D—N1D—H1D 125.0
N3B—C2B—N1B 104.8 (6) N1D—C2D—N3D 105.5 (6)
N3B—C2B—S2B 129.0 (5) N1D—C2D—S2D 126.5 (5)
N1B—C2B—S2B 126.2 (5) N3D—C2D—S2D 128.0 (5)
C2B—N3B—C4B 111.9 (5) C2D—N3D—C4D 111.1 (5)
C2B—N3B—H3B 124.0 C2D—N3D—H3D 124.5
C4B—N3B—H3B 124.0 C4D—N3D—H3D 124.5
C5B—C4B—N3B 105.1 (5) C5D—C4D—N3D 106.5 (6)
C5B—C4B—C41B 130.8 (6) C5D—C4D—C41D 128.3 (6)
N3B—C4B—C41B 124.2 (6) N3D—C4D—C41D 125.2 (6)
C42B—C41B—C46B 119.4 (7) C42D—C41D—C46D 115.1 (7)
C42B—C41B—C4B 121.9 (7) C42D—C41D—C4D 123.5 (7)
C46B—C41B—C4B 118.7 (6) C46D—C41D—C4D 121.2 (6)
C41B—C42B—C43B 117.5 (9) C43D—C42D—C41D 123.8 (8)
C41B—C42B—H42B 121.2 C43D—C42D—H42D 118.1
C43B—C42B—H42B 121.2 C41D—C42D—H42D 118.1
C44B—C43B—C42B 124.9 (9) C42D—C43D—C44D 117.1 (8)
C44B—C43B—H43B 117.6 C42D—C43D—H43D 121.5
C42B—C43B—H43B 117.6 C44D—C43D—H43D 121.5
C43B—C44B—C45B 116.0 (8) C45D—C44D—C43D 121.2 (8)
C43B—C44B—H44B 122.0 C45D—C44D—H44D 119.4
C45B—C44B—H44B 122.0 C43D—C44D—H44D 119.4
C44B—C45B—C46B 122.7 (9) C44D—C45D—C46D 119.9 (9)
C44B—C45B—H45B 118.6 C44D—C45D—H45D 120.0
C46B—C45B—H45B 118.6 C46D—C45D—H45D 120.0
C41B—C46B—C45B 119.5 (8) C45D—C46D—C41D 122.7 (7)
C41B—C46B—H46B 120.3 C45D—C46D—H46D 118.6
C45B—C46B—H46B 120.3 C41D—C46D—H46D 118.6
C4B—C5B—N1B 107.2 (6) C4D—C5D—N1D 106.9 (6)
C4B—C5B—H5B 126.4 C4D—C5D—H5D 126.6
N1B—C5B—H5B 126.4 N1D—C5D—H5D 126.6

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···S2B 0.86 2.44 3.274 (6) 163
N3A—H3A···S2Bi 0.86 2.50 3.350 (5) 172
C42A—H42A···S2Bi 0.93 2.85 3.723 (9) 156
N1B—H1B···S2Aii 0.86 2.46 3.290 (5) 163
N3B—H3B···S2A 0.86 2.48 3.343 (5) 176
C42B—H42B···S2A 0.93 2.79 3.686 (9) 161
N1C—H1C···S2D 0.86 2.45 3.288 (5) 166
N3C—H3C···S2Dii 0.86 2.50 3.348 (5) 172
C42C—H42C···S2Dii 0.93 2.89 3.741 (8) 153
N1D—H1D···S2Ci 0.86 2.43 3.271 (6) 166
N3D—H3D···S2C 0.86 2.50 3.353 (6) 172
C42D—H42D···S2C 0.93 2.85 3.766 (9) 169

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2157).

References

  1. Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157–165.
  2. Agilent (2011). CrysAlis PRO Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.
  3. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  4. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Buxeraud, J. (1995). Traite de Chimie Therapeutique, Vol. 4, ch. 18. Paris: Tec et Doc Lavoisier.
  7. Conde, A., Moreno, E. & Márquez, R. (1977). Acta Cryst. B33, 794–797.
  8. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Hussain, M. S., Al-Arfaj, A. R. & Hossain, M. L. (1990). Transition Met. Chem. 15, 264–269.
  11. International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Martindale, W. (1982). The Extra Pharmacopoeia, 28th ed. London: The Pharmaceutical Press.
  14. Raper, E. S., Jackson, A. R. W. & Gardiner, D. J. (1984). Inorg. Chim. Acta, 84, L1–L4.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020090/nk2157sup1.cif

e-68-o1686-sup1.cif (34.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020090/nk2157Isup2.hkl

e-68-o1686-Isup2.hkl (251.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020090/nk2157Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES