Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1690. doi: 10.1107/S1600536812020053

2-[4-(Benz­yloxy)benzyl­idene]malononitrile

Hai-feng Gan a, Xue-wei Liu a, Zheng Fang a, Kai Guo a,*
PMCID: PMC3379286  PMID: 22719484

Abstract

In the title mol­ecule, C17H12N2O, the dihedral angle between the two benzene rings is 84.98 (10)°. The dicyano­ethyl­ene group is coplanar with the benzene ring to which it is bonded. No classic hydrogen bonds were found in the crystal.

Related literature  

For background information and the synthetic procedure for the title compound, see: Kharas et al. (2007). For a related crystal structure, see: Zhu et al. (2007).graphic file with name e-68-o1690-scheme1.jpg

Experimental  

Crystal data  

  • C17H12N2O

  • M r = 260.29

  • Triclinic, Inline graphic

  • a = 6.8470 (14) Å

  • b = 9.6270 (19) Å

  • c = 10.544 (2) Å

  • α = 100.66 (3)°

  • β = 91.65 (3)°

  • γ = 94.26 (3)°

  • V = 680.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.976, T max = 0.992

  • 2722 measured reflections

  • 2496 independent reflections

  • 1664 reflections with I > 2σ(I)

  • R int = 0.022

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.176

  • S = 1.00

  • 2496 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020053/pv2535sup1.cif

e-68-o1690-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020053/pv2535Isup2.hkl

e-68-o1690-Isup2.hkl (122.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020053/pv2535Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research work was supported financially by the College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology and the ‘973’ project (grant No. 2012CB725204) of the Key Basic Research Program of China.

supplementary crystallographic information

Comment

The synthesis of the title compound has been reoprted previously (Kharas et al., 2007). It is a key intermediate in our studies of cardiovascular drugs. In this paper we report the crystal structure of the title compound.

In the title compound (Fig. 1), the dihedral angle between the benzene rings C1–C6 and C8–C13 is 84.98 (10) °. The dicyanoethylene group (N1/N2/C14–C17) is almost coplanar with the benzene ring C8–C13, with a dihedral angles between the two planes being 0.71 (8) °. The structure is devoid of any hydrogen bondinhg interactions (Fig. 2).

Experimental

To a solution of 4-(benzyloxy)benzaldehyde (10.01 mmol, 2.12 g) and malononitrile (10.14 mmol, 0.67 g) in ethanol (20 ml) was added triethylamine (0.31 ml) and the reaction mixture was heated to 338.15 K for 3 h. The reaction mixture was cooled to room temperature and then filtered to get the title compound (2.43 g) as pure a yellow solid (Kharas et al., 2007). Crystals of the title compound for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97 Å, for aryl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the unit cell packing of the title compound.

Crystal data

C17H12N2O Z = 2
Mr = 260.29 F(000) = 272
Triclinic, P1 Dx = 1.270 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8470 (14) Å Cell parameters from 25 reflections
b = 9.6270 (19) Å θ = 9–13°
c = 10.544 (2) Å µ = 0.08 mm1
α = 100.66 (3)° T = 293 K
β = 91.65 (3)° Block, yellow
γ = 94.26 (3)° 0.30 × 0.20 × 0.10 mm
V = 680.5 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1664 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
Graphite monochromator θmax = 25.4°, θmin = 2.0°
ω/2θ scans h = 0→8
Absorption correction: ψ scan (North et al., 1968) k = −11→11
Tmin = 0.976, Tmax = 0.992 l = −12→12
2722 measured reflections 3 standard reflections every 200 reflections
2496 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.110P] where P = (Fo2 + 2Fc2)/3
2496 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O 0.2390 (3) 0.75384 (16) 0.34116 (15) 0.0569 (5)
N1 0.2812 (4) 1.3682 (3) 0.0440 (2) 0.0787 (8)
C1 0.0380 (4) 0.6905 (3) 0.5996 (3) 0.0660 (7)
H1A −0.0703 0.7323 0.5729 0.079*
N2 0.2608 (4) 1.1632 (3) −0.3621 (2) 0.0701 (7)
C2 0.0139 (6) 0.5918 (3) 0.6777 (3) 0.0797 (9)
H2A −0.1106 0.5677 0.7040 0.096*
C3 0.1676 (7) 0.5300 (3) 0.7164 (3) 0.0851 (10)
H3A 0.1490 0.4633 0.7694 0.102*
C4 0.3527 (7) 0.5639 (4) 0.6788 (3) 0.0929 (11)
H4A 0.4589 0.5201 0.7058 0.111*
C5 0.3809 (5) 0.6648 (3) 0.5994 (3) 0.0763 (9)
H5A 0.5057 0.6885 0.5735 0.092*
C6 0.2224 (4) 0.7285 (2) 0.5601 (2) 0.0538 (6)
C7 0.2449 (4) 0.8328 (3) 0.4716 (2) 0.0596 (7)
H7A 0.1395 0.8955 0.4823 0.072*
H7B 0.3686 0.8899 0.4911 0.072*
C8 0.2438 (3) 0.8250 (2) 0.2424 (2) 0.0459 (6)
C9 0.2554 (4) 0.9733 (2) 0.2554 (2) 0.0502 (6)
H9A 0.2617 1.0303 0.3371 0.060*
C10 0.2575 (4) 1.0339 (2) 0.1472 (2) 0.0503 (6)
H10A 0.2657 1.1321 0.1569 0.060*
C11 0.2476 (3) 0.9510 (2) 0.0223 (2) 0.0453 (6)
C12 0.2362 (4) 0.8023 (2) 0.0131 (2) 0.0518 (6)
H12A 0.2296 0.7444 −0.0682 0.062*
C13 0.2346 (4) 0.7412 (2) 0.1198 (2) 0.0519 (6)
H13A 0.2273 0.6430 0.1104 0.062*
C14 0.2497 (3) 1.0026 (2) −0.0972 (2) 0.0486 (6)
H14A 0.2429 0.9312 −0.1703 0.058*
C15 0.2598 (3) 1.1353 (3) −0.1240 (2) 0.0497 (6)
C16 0.2724 (4) 1.2637 (3) −0.0292 (2) 0.0559 (6)
C17 0.2608 (4) 1.1526 (3) −0.2562 (3) 0.0538 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O 0.0747 (12) 0.0428 (9) 0.0535 (10) 0.0013 (8) 0.0064 (8) 0.0105 (7)
N1 0.103 (2) 0.0531 (14) 0.0792 (16) 0.0068 (13) 0.0117 (14) 0.0093 (13)
C1 0.0692 (19) 0.0665 (17) 0.0622 (16) 0.0038 (14) 0.0117 (14) 0.0110 (13)
N2 0.0831 (18) 0.0672 (15) 0.0647 (15) 0.0099 (12) 0.0025 (12) 0.0237 (12)
C2 0.104 (3) 0.0676 (18) 0.0684 (18) −0.0049 (18) 0.0198 (18) 0.0170 (15)
C3 0.139 (4) 0.0565 (17) 0.0603 (18) 0.003 (2) 0.009 (2) 0.0129 (14)
C4 0.119 (3) 0.080 (2) 0.083 (2) 0.029 (2) −0.021 (2) 0.0185 (18)
C5 0.072 (2) 0.0768 (19) 0.0817 (19) 0.0125 (16) −0.0042 (16) 0.0169 (17)
C6 0.0641 (17) 0.0455 (13) 0.0498 (13) 0.0016 (12) 0.0016 (12) 0.0050 (11)
C7 0.0664 (17) 0.0526 (14) 0.0582 (15) −0.0008 (12) 0.0042 (13) 0.0080 (12)
C8 0.0451 (13) 0.0403 (12) 0.0533 (13) 0.0017 (10) 0.0039 (10) 0.0122 (10)
C9 0.0575 (15) 0.0398 (12) 0.0517 (13) 0.0046 (10) 0.0032 (11) 0.0039 (10)
C10 0.0536 (15) 0.0373 (12) 0.0597 (14) 0.0038 (10) 0.0042 (11) 0.0084 (10)
C11 0.0387 (12) 0.0431 (12) 0.0546 (13) 0.0029 (10) 0.0033 (10) 0.0103 (10)
C12 0.0539 (15) 0.0441 (13) 0.0536 (14) 0.0028 (11) 0.0021 (11) −0.0002 (11)
C13 0.0602 (16) 0.0339 (11) 0.0601 (14) 0.0003 (10) 0.0026 (12) 0.0060 (11)
C14 0.0452 (14) 0.0457 (12) 0.0540 (13) 0.0056 (10) −0.0004 (11) 0.0068 (10)
C15 0.0439 (13) 0.0522 (14) 0.0543 (14) 0.0073 (11) 0.0045 (11) 0.0119 (11)
C16 0.0590 (16) 0.0521 (15) 0.0595 (15) 0.0054 (12) 0.0057 (12) 0.0170 (13)
C17 0.0525 (15) 0.0530 (14) 0.0597 (16) 0.0086 (11) 0.0005 (12) 0.0191 (12)

Geometric parameters (Å, º)

O—C8 1.348 (3) C7—H7B 0.9700
O—C7 1.441 (3) C8—C13 1.388 (3)
N1—C16 1.146 (3) C8—C9 1.405 (3)
C1—C2 1.373 (4) C9—C10 1.374 (3)
C1—C6 1.385 (4) C9—H9A 0.9300
C1—H1A 0.9300 C10—C11 1.405 (3)
N2—C17 1.140 (3) C10—H10A 0.9300
C2—C3 1.337 (5) C11—C12 1.413 (3)
C2—H2A 0.9300 C11—C14 1.437 (3)
C3—C4 1.374 (5) C12—C13 1.362 (3)
C3—H3A 0.9300 C12—H12A 0.9300
C4—C5 1.401 (5) C13—H13A 0.9300
C4—H4A 0.9300 C14—C15 1.356 (3)
C5—C6 1.376 (4) C14—H14A 0.9300
C5—H5A 0.9300 C15—C16 1.434 (4)
C6—C7 1.495 (3) C15—C17 1.434 (4)
C7—H7A 0.9700
C8—O—C7 119.02 (18) O—C8—C9 125.1 (2)
C2—C1—C6 120.6 (3) C13—C8—C9 119.4 (2)
C2—C1—H1A 119.7 C10—C9—C8 119.9 (2)
C6—C1—H1A 119.7 C10—C9—H9A 120.1
C3—C2—C1 120.6 (3) C8—C9—H9A 120.1
C3—C2—H2A 119.7 C9—C10—C11 121.6 (2)
C1—C2—H2A 119.7 C9—C10—H10A 119.2
C2—C3—C4 120.7 (3) C11—C10—H10A 119.2
C2—C3—H3A 119.7 C10—C11—C12 116.8 (2)
C4—C3—H3A 119.7 C10—C11—C14 126.4 (2)
C3—C4—C5 119.7 (3) C12—C11—C14 116.7 (2)
C3—C4—H4A 120.2 C13—C12—C11 122.0 (2)
C5—C4—H4A 120.2 C13—C12—H12A 119.0
C6—C5—C4 119.5 (3) C11—C12—H12A 119.0
C6—C5—H5A 120.3 C12—C13—C8 120.3 (2)
C4—C5—H5A 120.3 C12—C13—H13A 119.9
C5—C6—C1 119.0 (3) C8—C13—H13A 119.9
C5—C6—C7 121.2 (3) C15—C14—C11 132.4 (2)
C1—C6—C7 119.8 (2) C15—C14—H14A 113.8
O—C7—C6 107.69 (19) C11—C14—H14A 113.8
O—C7—H7A 110.2 C14—C15—C16 125.0 (2)
C6—C7—H7A 110.2 C14—C15—C17 119.1 (2)
O—C7—H7B 110.2 C16—C15—C17 115.9 (2)
C6—C7—H7B 110.2 N1—C16—C15 178.1 (3)
H7A—C7—H7B 108.5 N2—C17—C15 178.5 (3)
O—C8—C13 115.49 (19)
C6—C1—C2—C3 −0.4 (4) C13—C8—C9—C10 0.0 (4)
C1—C2—C3—C4 0.0 (5) C8—C9—C10—C11 0.2 (4)
C2—C3—C4—C5 0.3 (5) C9—C10—C11—C12 −0.3 (3)
C3—C4—C5—C6 −0.1 (5) C9—C10—C11—C14 −179.6 (2)
C4—C5—C6—C1 −0.4 (4) C10—C11—C12—C13 0.1 (3)
C4—C5—C6—C7 −177.8 (2) C14—C11—C12—C13 179.5 (2)
C2—C1—C6—C5 0.6 (4) C11—C12—C13—C8 0.1 (4)
C2—C1—C6—C7 178.1 (2) O—C8—C13—C12 179.3 (2)
C8—O—C7—C6 175.8 (2) C9—C8—C13—C12 −0.2 (4)
C5—C6—C7—O 84.0 (3) C10—C11—C14—C15 −0.5 (4)
C1—C6—C7—O −93.4 (3) C12—C11—C14—C15 −179.8 (2)
C7—O—C8—C13 −179.1 (2) C11—C14—C15—C16 0.3 (4)
C7—O—C8—C9 0.4 (3) C11—C14—C15—C17 179.4 (2)
O—C8—C9—C10 −179.4 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2535).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Kharas, G. B., Russell, S. M., Tran, V., Tolefree, Q. L., Tulewicz, D. M., Gora, A., Bajgoric, J., Balco, M. T., Dickey, G. A. & Kladis, G. (2007). J. Macromol. Sci. Part A Pure Appl. Chem., 45, 5–8.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zhu, N., Tran, P., Bell, N. & Stevens, C. L. K. (2007). J. Chem. Crystallogr. 37, 670–683.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020053/pv2535sup1.cif

e-68-o1690-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020053/pv2535Isup2.hkl

e-68-o1690-Isup2.hkl (122.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020053/pv2535Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES