Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1691. doi: 10.1107/S1600536812020065

(1S*,5R*)-9-Phenyl-9-aza­bicyclo­[3.3.1]nonan-3-one

Zhen-ju Jiang a, Qi He a, Zhen Li b, Zhou-yu Wang a,*
PMCID: PMC3379287  PMID: 22719485

Abstract

In the title compound, C14H17NO, the piperidinone and piperidine rings both adopt a chair conformation. The chiral crystals were obtained from a racemic reaction product via spontaneous resolution.

Related literature  

For the synthesis, see: Zhang (2003). For applications of the compound, see: Vernekar et al. (2010); Lazny et al. (2011). For puckering analysis, see: Cremer & Pople (1975).graphic file with name e-68-o1691-scheme1.jpg

Experimental  

Crystal data  

  • C14H17NO

  • M r = 215.29

  • Orthorhombic, Inline graphic

  • a = 9.4028 (3) Å

  • b = 10.2524 (5) Å

  • c = 12.0473 (6) Å

  • V = 1161.38 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.35 mm

Data collection  

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (ABSPACK in CrysAlis PRO; Agilent, 2011) T min = 0.918, T max = 1.000

  • 3285 measured reflections

  • 2218 independent reflections

  • 1722 reflections with I > 2σ(I)

  • R int = 0.015

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.092

  • S = 1.02

  • 2218 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020065/fy2049sup1.cif

e-68-o1691-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020065/fy2049Isup3.hkl

e-68-o1691-Isup3.hkl (109.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020065/fy2049Isup4.cdx

Supplementary material file. DOI: 10.1107/S1600536812020065/fy2049Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Open Fund of the Key Laboratory of Sichuan Province (grant No. Szjj2011-005) and the Research Fund of the Key Laboratory of TCM Biotechnology (Xihua University).

supplementary crystallographic information

Comment

The compound 1S*,5R*-9-phenyl-9-aza-bicyclo[3.3.1]nonan-3-one is an important intermediate for synthesizing granisetron derivatives. The bicyclic skeleton of 9-azabicyclo[3.3.1]nonane is a key substructure of a variety of bioactive compounds (Vernekar et al., 2010; Lazny et al., 2011). The racemic title compound was synthesized by the Mannich reaction and spontaneous resolution occurred on recrystallization from a mixture of ethyl acetate and petroleum ether.

In the title structure the N1/C1—C5 piperidinone ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.5159 (3) Å, θ = 158.26 (3)° and φ = 173.0692 (12)°. The N1/C1/C8—C5 piperidine ring has a chair conformation, too [Q = 0.5727 (3) Å, θ = 7.74 (12)° and φ = 23.8669 (13)°]. The relative configuration of C1 and C5 is S*, R* respectively.

Experimental

To a stirred solution of glutaraldehyde (1.32 ml, 5 mmol) and aniline (0.55 ml,6 mmol) in water (10 ml), 3-oxopentanedioic acid (0.88 g,6 mmol) was added. The mixture was stirred overnight at room temperature. Then the pH was adjusted to 5 with aq. HCl and the mixture was refluxed for another one hour. Then sodium hydroxide was added to increase the pH to 9. The mixture was extracted with ethyl-acetate. The combined extract was dried over anhydrous MgSO4 and evaporated in vacuo. The residue was purified through column chromatography on silica gel (eluent: hexane/EtOAc = 4/1) to give 9-phenyl-9-aza-bicyclo[3.3.1]nonan-3-one. Then the racemic mixture was crystallized from a solution in a 1:10 (v/v) mixture of ethyl acetate and petroleum ether to produce the title compound.

Refinement

All H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.97 Å for aliphatic CH, 0.98 Å for CH2 and 0.93 Å for aromatic CH groups, respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, the absolute configuration is not determined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound.

Fig. 2.

Fig. 2.

A packing diagram for the title compound.

Crystal data

C14H17NO Dx = 1.231 Mg m3
Mr = 215.29 Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, P212121 Cell parameters from 1237 reflections
a = 9.4028 (3) Å θ = 2.9–29.0°
b = 10.2524 (5) Å µ = 0.08 mm1
c = 12.0473 (6) Å T = 293 K
V = 1161.38 (9) Å3 Block, colourless
Z = 4 0.40 × 0.40 × 0.35 mm
F(000) = 464

Data collection

Agilent Xcalibur Eos diffractometer 2218 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1722 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.015
Detector resolution: 16.0874 pixels mm-1 θmax = 26.4°, θmin = 2.9°
ω scans h = −11→7
Absorption correction: multi-scan (ABSPACK in CrysAlis PRO; Agilent, 2011) k = −9→12
Tmin = 0.918, Tmax = 1.000 l = −8→15
3285 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0394P)2] where P = (Fo2 + 2Fc2)/3
2218 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.58709 (17) −0.01586 (16) −0.68342 (15) 0.0838 (6)
N1 −0.19284 (14) −0.18245 (14) −0.65084 (12) 0.0368 (4)
C1 −0.31907 (18) −0.26416 (18) −0.63463 (16) 0.0409 (5)
H1 −0.2985 −0.3506 −0.6653 0.049*
C2 −0.4480 (2) −0.20832 (19) −0.69713 (16) 0.0472 (5)
H2A −0.4367 −0.2265 −0.7757 0.057*
H2B −0.5329 −0.2532 −0.6721 0.057*
C3 −0.4692 (2) −0.0642 (2) −0.68231 (16) 0.0510 (6)
C4 −0.3376 (2) 0.01633 (18) −0.67070 (17) 0.0489 (5)
H4A −0.3618 0.0971 −0.6332 0.059*
H4B −0.3032 0.0386 −0.7442 0.059*
C5 −0.2173 (2) −0.05077 (18) −0.60634 (17) 0.0412 (5)
H5 −0.1302 0.0001 −0.6174 0.049*
C6 −0.2468 (2) −0.0573 (2) −0.48223 (17) 0.0494 (5)
H6A −0.1612 −0.0854 −0.4442 0.059*
H6B −0.2703 0.0293 −0.4556 0.059*
C7 −0.3672 (2) −0.1497 (2) −0.45334 (16) 0.0522 (6)
H7A −0.3705 −0.1626 −0.3736 0.063*
H7B −0.4571 −0.1122 −0.4766 0.063*
C8 −0.3452 (2) −0.2797 (2) −0.51068 (17) 0.0510 (5)
H8A −0.4286 −0.3338 −0.4994 0.061*
H8B −0.2646 −0.3239 −0.4774 0.061*
C9 −0.11420 (18) −0.19480 (18) −0.75009 (15) 0.0363 (4)
C10 −0.1472 (2) −0.28634 (19) −0.83142 (16) 0.0435 (5)
H10 −0.2261 −0.3400 −0.8221 0.052*
C11 −0.0647 (2) −0.2989 (2) −0.92593 (16) 0.0537 (6)
H11 −0.0896 −0.3602 −0.9794 0.064*
C12 0.0534 (2) −0.2223 (2) −0.94206 (16) 0.0597 (6)
H12 0.1084 −0.2308 −1.0058 0.072*
C13 0.0880 (2) −0.1329 (2) −0.8617 (2) 0.0605 (6)
H13 0.1680 −0.0807 −0.8712 0.073*
C14 0.0069 (2) −0.1187 (2) −0.76732 (18) 0.0497 (5)
H14 0.0333 −0.0574 −0.7142 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0585 (9) 0.0818 (13) 0.1110 (16) 0.0252 (10) −0.0147 (10) 0.0074 (12)
N1 0.0385 (8) 0.0357 (8) 0.0362 (9) −0.0040 (7) 0.0001 (7) −0.0009 (7)
C1 0.0411 (10) 0.0361 (10) 0.0455 (12) −0.0027 (9) 0.0024 (9) 0.0022 (9)
C2 0.0401 (10) 0.0537 (12) 0.0478 (13) −0.0053 (10) −0.0056 (9) −0.0027 (11)
C3 0.0514 (12) 0.0589 (13) 0.0428 (13) 0.0091 (12) −0.0071 (10) 0.0064 (11)
C4 0.0646 (13) 0.0389 (10) 0.0431 (12) 0.0059 (11) 0.0016 (11) 0.0032 (9)
C5 0.0461 (11) 0.0371 (10) 0.0405 (11) −0.0071 (9) 0.0010 (9) −0.0024 (9)
C6 0.0536 (11) 0.0577 (13) 0.0370 (12) 0.0021 (11) −0.0035 (10) −0.0052 (11)
C7 0.0590 (13) 0.0634 (13) 0.0343 (11) −0.0013 (11) 0.0053 (10) 0.0057 (10)
C8 0.0501 (12) 0.0536 (12) 0.0494 (12) −0.0058 (11) 0.0045 (10) 0.0128 (11)
C9 0.0371 (9) 0.0379 (10) 0.0340 (10) 0.0052 (9) −0.0020 (8) 0.0040 (9)
C10 0.0425 (10) 0.0446 (11) 0.0434 (11) 0.0035 (10) −0.0026 (9) −0.0023 (10)
C11 0.0581 (13) 0.0581 (14) 0.0450 (13) 0.0129 (12) −0.0016 (11) −0.0081 (11)
C12 0.0618 (14) 0.0737 (16) 0.0436 (13) 0.0145 (13) 0.0173 (12) 0.0027 (12)
C13 0.0533 (13) 0.0651 (15) 0.0630 (16) −0.0072 (12) 0.0156 (12) 0.0051 (13)
C14 0.0495 (11) 0.0528 (13) 0.0467 (13) −0.0078 (11) 0.0043 (10) −0.0023 (10)

Geometric parameters (Å, º)

O1—C3 1.215 (2) C6—C7 1.517 (3)
N1—C1 1.466 (2) C7—H7A 0.9700
N1—C5 1.471 (2) C7—H7B 0.9700
N1—C9 1.412 (2) C7—C8 1.516 (3)
C1—H1 0.9800 C8—H8A 0.9700
C1—C2 1.537 (3) C8—H8B 0.9700
C1—C8 1.522 (3) C9—C10 1.392 (3)
C2—H2A 0.9700 C9—C14 1.396 (3)
C2—H2B 0.9700 C10—H10 0.9300
C2—C3 1.501 (3) C10—C11 1.384 (3)
C3—C4 1.494 (3) C11—H11 0.9300
C4—H4A 0.9700 C11—C12 1.374 (3)
C4—H4B 0.9700 C12—H12 0.9300
C4—C5 1.534 (3) C12—C13 1.373 (3)
C5—H5 0.9800 C13—H13 0.9300
C5—C6 1.522 (3) C13—C14 1.376 (3)
C6—H6A 0.9700 C14—H14 0.9300
C6—H6B 0.9700
C1—N1—C5 110.46 (14) C7—C6—C5 112.88 (17)
C9—N1—C1 119.07 (15) C7—C6—H6A 109.0
C9—N1—C5 118.22 (14) C7—C6—H6B 109.0
N1—C1—H1 107.9 C6—C7—H7A 109.6
N1—C1—C2 111.11 (15) C6—C7—H7B 109.6
N1—C1—C8 108.76 (15) H7A—C7—H7B 108.2
C2—C1—H1 107.9 C8—C7—C6 110.08 (16)
C8—C1—H1 107.9 C8—C7—H7A 109.6
C8—C1—C2 113.10 (16) C8—C7—H7B 109.6
C1—C2—H2A 108.7 C1—C8—H8A 109.2
C1—C2—H2B 108.7 C1—C8—H8B 109.2
H2A—C2—H2B 107.6 C7—C8—C1 112.14 (16)
C3—C2—C1 114.39 (17) C7—C8—H8A 109.2
C3—C2—H2A 108.7 C7—C8—H8B 109.2
C3—C2—H2B 108.7 H8A—C8—H8B 107.9
O1—C3—C2 121.5 (2) C10—C9—N1 122.68 (16)
O1—C3—C4 122.1 (2) C10—C9—C14 117.02 (18)
C4—C3—C2 116.42 (18) C14—C9—N1 120.20 (17)
C3—C4—H4A 108.7 C9—C10—H10 119.4
C3—C4—H4B 108.7 C11—C10—C9 121.13 (19)
C3—C4—C5 114.20 (16) C11—C10—H10 119.4
H4A—C4—H4B 107.6 C10—C11—H11 119.5
C5—C4—H4A 108.7 C12—C11—C10 121.1 (2)
C5—C4—H4B 108.7 C12—C11—H11 119.5
N1—C5—C4 110.04 (15) C11—C12—H12 120.9
N1—C5—H5 108.0 C13—C12—C11 118.28 (19)
N1—C5—C6 110.25 (16) C13—C12—H12 120.9
C4—C5—H5 108.0 C12—C13—H13 119.3
C6—C5—C4 112.44 (16) C12—C13—C14 121.5 (2)
C6—C5—H5 108.0 C14—C13—H13 119.3
C5—C6—H6A 109.0 C9—C14—H14 119.5
C5—C6—H6B 109.0 C13—C14—C9 121.0 (2)
H6A—C6—H6B 107.8 C13—C14—H14 119.5
O1—C3—C4—C5 146.4 (2) C5—N1—C1—C2 61.85 (19)
N1—C1—C2—C3 −46.2 (2) C5—N1—C1—C8 −63.28 (19)
N1—C1—C8—C7 58.9 (2) C5—N1—C9—C10 −142.12 (17)
N1—C5—C6—C7 −54.0 (2) C5—N1—C9—C14 41.6 (2)
N1—C9—C10—C11 −177.64 (17) C5—C6—C7—C8 49.0 (2)
N1—C9—C14—C13 177.52 (18) C6—C7—C8—C1 −51.6 (2)
C1—N1—C5—C4 −63.47 (19) C8—C1—C2—C3 76.4 (2)
C1—N1—C5—C6 61.12 (19) C9—N1—C1—C2 −79.9 (2)
C1—N1—C9—C10 −3.3 (2) C9—N1—C1—C8 155.02 (16)
C1—N1—C9—C14 −179.62 (16) C9—N1—C5—C4 78.60 (18)
C1—C2—C3—O1 −148.4 (2) C9—N1—C5—C6 −156.81 (15)
C1—C2—C3—C4 34.0 (2) C9—C10—C11—C12 0.7 (3)
C2—C1—C8—C7 −65.0 (2) C10—C9—C14—C13 1.0 (3)
C2—C3—C4—C5 −35.9 (2) C10—C11—C12—C13 0.2 (3)
C3—C4—C5—N1 49.8 (2) C11—C12—C13—C14 −0.4 (3)
C3—C4—C5—C6 −73.5 (2) C12—C13—C14—C9 −0.2 (3)
C4—C5—C6—C7 69.2 (2) C14—C9—C10—C11 −1.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2049).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Lazny, R., Wolosewicz, K., Zielinska, P., Lipkowska, Z. U. & Kalicki, P. (2011). Tetrahedron, 67, 9433–9439.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Vernekar, S. K. V., Hallaq, H. Y., Clarkson, G., Thompson, A. J., Silvestri, L., Lummis, S. C. R. & Lochner, M. (2010). J. Med. Chem. 53, 2324–2328. [DOI] [PMC free article] [PubMed]
  7. Zhang, Y. (2003). CN Patent 1451660A.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020065/fy2049sup1.cif

e-68-o1691-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020065/fy2049Isup3.hkl

e-68-o1691-Isup3.hkl (109.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020065/fy2049Isup4.cdx

Supplementary material file. DOI: 10.1107/S1600536812020065/fy2049Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES