Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1692. doi: 10.1107/S1600536812020478

2-(4-Isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-5-methyl­nicotinic acid

Li-Ping Liu a, Xiao-Dan Wang a, Shuang Zhang a, Jin-Sheng Gao a,*
PMCID: PMC3379288  PMID: 22719486

Abstract

In the title herbicideh/phytocide, known as imaza­pic, C14H17N3O3, the pyridine and imidazole rings are almost coplanar [dihedral angle = 3.08 (5)°]. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, an N—H⋯O hydrogen bond links mol­ecules into a chain parallel to [010].

Related literature  

For the synthesis, see: Szezepanski et al. (1988).graphic file with name e-68-o1692-scheme1.jpg

Experimental  

Crystal data  

  • C14H17N3O3

  • M r = 275.31

  • Monoclinic, Inline graphic

  • a = 12.102 (2) Å

  • b = 16.035 (3) Å

  • c = 7.2883 (15) Å

  • β = 94.17 (3)°

  • V = 1410.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.60 × 0.30 × 0.18 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.946, T max = 0.984

  • 13471 measured reflections

  • 3202 independent reflections

  • 2234 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.145

  • S = 1.00

  • 3202 reflections

  • 192 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020478/ng5267sup1.cif

e-68-o1692-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020478/ng5267Isup2.hkl

e-68-o1692-Isup2.hkl (157.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020478/ng5267Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 (1) 1.68 (1) 2.4972 (16) 173 (2)
N3—H3⋯O2i 0.90 (1) 2.06 (1) 2.9387 (18) 165 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the project of the Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University for supporting this work.

supplementary crystallographic information

Comment

Imazapic is an effective and widely used herbicide. Imazapic for the control of annual broadleaf and gramineae weeds has important achievements in agriculture. Herein, we report the crystal structure of this herbicide (Scheme I).

The pyridine and imidazole ring are almost coplanar with small dihedral angle of 3.08 (5) ° (Figure 1). There is an intramolecular O—H···N hydrogen bond; an intermolecular N—H···O hydrogen bond links isolated molecules into chain structure along [010] (Figure 2, Table 1).

Experimental

The title compound was prepared by the reaction of diethyl 5-methylpyridine-2,3-dicarboxylate and 2-amino-2,3-dimethylbutanehydrazide according to a method reported in the patent literature. A white powder was obtained in 78% yield (Szezepanski et al., 1988). Colorless crystals were obtained by the recrystallization of title compound from acetonitrile.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 / 0.98 / 0.96 Å (aromatic / methine / methyl), and with Uiso(H) = 1.2 / 1.5 Ueq(C). N-bound and O-bound H atoms were located in a differece Fourier map and was refined with restraint as N—H = 0.90±0.01 Å and O—H = 0.82±0.01 Å, respectively, and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.

Fig. 2.

Fig. 2.

A partial packing view, showing the hydrogen-bonding chain structure along [010].

Crystal data

C14H17N3O3 F(000) = 584
Mr = 275.31 Dx = 1.296 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 10539 reflections
a = 12.102 (2) Å θ = 3.1–27.4°
b = 16.035 (3) Å µ = 0.09 mm1
c = 7.2883 (15) Å T = 293 K
β = 94.17 (3)° Block, colorless
V = 1410.6 (5) Å3 0.60 × 0.30 × 0.18 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 3202 independent reflections
Radiation source: fine-focus sealed tube 2234 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
ω scan θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −15→15
Tmin = 0.946, Tmax = 0.984 k = −20→20
13471 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0979P)2] where P = (Fo2 + 2Fc2)/3
3202 reflections (Δ/σ)max = 0.001
192 parameters Δρmax = 0.28 e Å3
2 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.01695 (11) 0.78025 (8) 0.26937 (16) 0.0326 (3)
C2 1.12083 (12) 0.76017 (9) 0.35266 (18) 0.0377 (3)
H2 1.1400 0.7043 0.3680 0.045*
C3 1.19647 (12) 0.82072 (10) 0.41336 (19) 0.0414 (3)
C4 1.16383 (14) 0.90226 (10) 0.3862 (2) 0.0502 (4)
H4 1.2136 0.9439 0.4251 0.060*
C5 0.99292 (11) 0.86611 (8) 0.25086 (18) 0.0343 (3)
C6 0.94567 (12) 0.70446 (8) 0.2115 (2) 0.0380 (3)
C7 1.30826 (14) 0.79919 (12) 0.5050 (2) 0.0574 (5)
H7A 1.3650 0.8150 0.4264 0.086*
H7B 1.3122 0.7402 0.5275 0.086*
H7C 1.3189 0.8286 0.6197 0.086*
C8 0.88794 (12) 0.90408 (8) 0.17407 (18) 0.0364 (3)
C9 0.77171 (13) 1.00954 (9) 0.1004 (2) 0.0463 (4)
C10 0.71625 (13) 0.92605 (9) 0.0469 (2) 0.0403 (3)
C11 0.60962 (13) 0.91307 (11) 0.1470 (2) 0.0502 (4)
H11 0.5570 0.9565 0.1037 0.060*
C12 0.69487 (16) 0.92380 (12) −0.1627 (2) 0.0565 (5)
H12A 0.7637 0.9304 −0.2187 0.085*
H12B 0.6455 0.9683 −0.2015 0.085*
H12C 0.6620 0.8713 −0.1991 0.085*
C13 0.62931 (18) 0.92271 (16) 0.3541 (2) 0.0755 (6)
H13A 0.6825 0.8821 0.4004 0.113*
H13B 0.5609 0.9145 0.4104 0.113*
H13C 0.6570 0.9777 0.3823 0.113*
C14 0.5557 (2) 0.82921 (17) 0.1010 (4) 0.0935 (8)
H14A 0.6040 0.7852 0.1465 0.140*
H14B 0.5424 0.8240 −0.0299 0.140*
H14C 0.4866 0.8255 0.1576 0.140*
N1 1.06558 (11) 0.92563 (7) 0.30766 (19) 0.0475 (3)
N2 0.80181 (10) 0.86483 (7) 0.10681 (16) 0.0382 (3)
N3 0.87614 (11) 0.98947 (8) 0.17332 (19) 0.0459 (3)
H3 0.9282 (14) 1.0274 (10) 0.208 (3) 0.066 (5)*
O1 0.85037 (10) 0.71349 (6) 0.12055 (16) 0.0499 (3)
H1 0.8310 (18) 0.7624 (4) 0.109 (3) 0.075*
O2 0.98114 (10) 0.63550 (7) 0.25044 (19) 0.0606 (4)
O3 0.73227 (11) 1.07853 (7) 0.0816 (2) 0.0687 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0366 (7) 0.0277 (6) 0.0341 (6) 0.0013 (5) 0.0064 (5) 0.0019 (5)
C2 0.0377 (8) 0.0335 (7) 0.0422 (7) 0.0061 (6) 0.0051 (6) 0.0037 (5)
C3 0.0362 (8) 0.0468 (8) 0.0412 (7) 0.0022 (6) 0.0021 (6) 0.0027 (6)
C4 0.0417 (9) 0.0429 (9) 0.0641 (9) −0.0103 (7) −0.0101 (7) 0.0015 (7)
C5 0.0353 (7) 0.0283 (6) 0.0392 (7) −0.0019 (5) 0.0021 (5) 0.0023 (5)
C6 0.0399 (8) 0.0271 (7) 0.0474 (7) 0.0013 (6) 0.0054 (6) −0.0007 (5)
C7 0.0376 (9) 0.0683 (12) 0.0649 (10) 0.0034 (8) −0.0059 (7) 0.0029 (8)
C8 0.0389 (8) 0.0257 (7) 0.0444 (7) −0.0004 (5) 0.0019 (6) 0.0017 (5)
C9 0.0439 (9) 0.0318 (8) 0.0625 (9) 0.0029 (6) −0.0005 (7) 0.0021 (6)
C10 0.0389 (8) 0.0338 (7) 0.0470 (8) 0.0030 (6) −0.0049 (6) 0.0013 (6)
C11 0.0362 (8) 0.0590 (10) 0.0543 (9) −0.0013 (7) −0.0032 (6) −0.0023 (7)
C12 0.0643 (11) 0.0590 (11) 0.0454 (8) 0.0105 (8) −0.0020 (7) 0.0053 (7)
C13 0.0623 (13) 0.1113 (19) 0.0536 (10) −0.0148 (11) 0.0090 (9) −0.0095 (10)
C14 0.0753 (16) 0.1046 (18) 0.1019 (17) −0.0496 (14) 0.0153 (13) −0.0230 (14)
N1 0.0431 (8) 0.0325 (7) 0.0652 (8) −0.0056 (5) −0.0082 (6) 0.0031 (6)
N2 0.0370 (7) 0.0290 (6) 0.0478 (6) −0.0004 (5) −0.0033 (5) 0.0015 (5)
N3 0.0406 (7) 0.0266 (6) 0.0689 (8) −0.0005 (5) −0.0075 (6) −0.0002 (5)
O1 0.0463 (6) 0.0279 (5) 0.0737 (7) −0.0019 (5) −0.0094 (5) −0.0031 (5)
O2 0.0548 (7) 0.0265 (5) 0.0989 (9) 0.0039 (5) −0.0055 (6) 0.0038 (5)
O3 0.0566 (8) 0.0315 (6) 0.1157 (11) 0.0103 (5) −0.0100 (7) 0.0003 (6)

Geometric parameters (Å, º)

C1—C2 1.393 (2) C9—N3 1.373 (2)
C1—C5 1.4116 (18) C9—C10 1.535 (2)
C1—C6 1.5317 (19) C10—N2 1.4699 (17)
C2—C3 1.385 (2) C10—C12 1.531 (2)
C2—H2 0.9300 C10—C11 1.542 (2)
C3—C4 1.376 (2) C11—C13 1.519 (2)
C3—C7 1.505 (2) C11—C14 1.521 (3)
C4—N1 1.335 (2) C11—H11 0.9800
C4—H4 0.9300 C12—H12A 0.9600
C5—N1 1.3426 (18) C12—H12B 0.9600
C5—C8 1.4813 (19) C12—H12C 0.9600
C6—O2 1.2124 (17) C13—H13A 0.9600
C6—O1 1.2959 (19) C13—H13B 0.9600
C7—H7A 0.9600 C13—H13C 0.9600
C7—H7B 0.9600 C14—H14A 0.9600
C7—H7C 0.9600 C14—H14B 0.9600
C8—N2 1.2840 (18) C14—H14C 0.9600
C8—N3 1.3767 (18) N3—H3 0.898 (9)
C9—O3 1.2087 (18) O1—H1 0.8203 (10)
C2—C1—C5 116.11 (12) N2—C10—C11 111.41 (12)
C2—C1—C6 114.13 (12) C12—C10—C11 112.47 (13)
C5—C1—C6 129.76 (12) C9—C10—C11 111.28 (13)
C3—C2—C1 122.12 (13) C13—C11—C14 110.02 (17)
C3—C2—H2 118.9 C13—C11—C10 112.34 (14)
C1—C2—H2 118.9 C14—C11—C10 112.06 (15)
C4—C3—C2 116.36 (13) C13—C11—H11 107.4
C4—C3—C7 121.43 (15) C14—C11—H11 107.4
C2—C3—C7 122.21 (15) C10—C11—H11 107.4
N1—C4—C3 124.46 (14) C10—C12—H12A 109.5
N1—C4—H4 117.8 C10—C12—H12B 109.5
C3—C4—H4 117.8 H12A—C12—H12B 109.5
N1—C5—C1 122.55 (13) C10—C12—H12C 109.5
N1—C5—C8 110.42 (12) H12A—C12—H12C 109.5
C1—C5—C8 127.01 (12) H12B—C12—H12C 109.5
O2—C6—O1 120.56 (13) C11—C13—H13A 109.5
O2—C6—C1 118.47 (13) C11—C13—H13B 109.5
O1—C6—C1 120.97 (11) H13A—C13—H13B 109.5
C3—C7—H7A 109.5 C11—C13—H13C 109.5
C3—C7—H7B 109.5 H13A—C13—H13C 109.5
H7A—C7—H7B 109.5 H13B—C13—H13C 109.5
C3—C7—H7C 109.5 C11—C14—H14A 109.5
H7A—C7—H7C 109.5 C11—C14—H14B 109.5
H7B—C7—H7C 109.5 H14A—C14—H14B 109.5
N2—C8—N3 113.88 (12) C11—C14—H14C 109.5
N2—C8—C5 126.36 (12) H14A—C14—H14C 109.5
N3—C8—C5 119.75 (12) H14B—C14—H14C 109.5
O3—C9—N3 127.10 (15) C4—N1—C5 118.40 (13)
O3—C9—C10 127.42 (15) C8—N2—C10 108.71 (11)
N3—C9—C10 105.48 (12) C9—N3—C8 109.09 (12)
N2—C10—C12 110.19 (13) C9—N3—H3 123.8 (13)
N2—C10—C9 102.79 (11) C8—N3—H3 127.1 (14)
C12—C10—C9 108.25 (13) C6—O1—H1 113.3 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.82 (1) 1.68 (1) 2.4972 (16) 173 (2)
N3—H3···O2i 0.90 (1) 2.06 (1) 2.9387 (18) 165 (2)

Symmetry code: (i) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5267).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  3. Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Szezepanski, H., Dieter, W. & Bottmingen, D. (1988). US Patent No. US4758667.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020478/ng5267sup1.cif

e-68-o1692-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020478/ng5267Isup2.hkl

e-68-o1692-Isup2.hkl (157.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020478/ng5267Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES