Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1695. doi: 10.1107/S1600536812020697

4-Cyano­pyridinium nitrate

Wen-Ni Zheng a,*
PMCID: PMC3379290  PMID: 22719488

Abstract

The title compound, C6H5N2 +·NO3 , is a proton-transfer compound between 4-cyano­pyridine and nitric acid. In the asymmetric unit, the components are linked by a strong N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked into a C(6) chain along [010] by C—H⋯O inter­actions.

Related literature  

For the structures and ferroelectric properties of related compounds, see: Fu et al. (2011a ,b ,c ); Dai & Chen (2011); Xu et al. (2011); Zheng (2011). For graph-set motif see: Bernstein et al. (1995).graphic file with name e-68-o1695-scheme1.jpg

Experimental  

Crystal data  

  • C6H5N2 +·NO3

  • M r = 167.13

  • Monoclinic, Inline graphic

  • a = 6.3663 (2) Å

  • b = 13.2868 (9) Å

  • c = 9.1019 (2) Å

  • β = 103.755 (1)°

  • V = 747.83 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.10 × 0.05 × 0.05 mm

Data collection  

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.910, T max = 1.000

  • 5151 measured reflections

  • 1694 independent reflections

  • 1349 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.146

  • S = 1.14

  • 1694 reflections

  • 109 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020697/bx2407sup1.cif

e-68-o1695-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020697/bx2407Isup2.hkl

e-68-o1695-Isup2.hkl (83.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020697/bx2407Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.90 1.75 2.6481 (18) 176
C4—H4A⋯O3i 0.93 2.29 3.220 (2) 179

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by a start-up grant from Southeast University, China.

supplementary crystallographic information

Comment

Simple organic salts containing strong intermolecular H-bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Fu et al., 2011a, 2011b, 2011c). With the purpose of obtaining phase transition crystals of organic salts, various organic molecules have been studied and a series of new materials have been prepared (Dai & Chen 2011; Xu, et al. 2011; Zheng 2011). We report here the crystal structure of the title compound. The title compound (C6H5N2)+.NO3- is a proton-transfer compound between 4-cyanopyridine and nitric acid. In the asymmetric unit the components are linked by one strong N—H···O hydrogen bond interaction, Fig 1. In the crystal the molecules are linked into C(6) chain by simple C—H···O interactions along [010] (Bernstein, et al., 1995), (Fig. 2, Table1).

Experimental

The HNO3 (5 mL), isonicotinonitrile (20 mmol) and ethanol (50 mL) were added into a 100mL flask. The mixture was stirred at 60oC for 2 h, and then the precipitate was filtrated out. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement

All the H atoms attached to C atoms were situated into the idealized positions and treated as riding with C–H = 0.93 Å (aromatic) with Uiso(H)=1.2Ueq(C). The positional parameters of the H atom (N) was refined freely and in the last stage of the refinement, it was restrained with the N—H = 0.90Å, with Uiso(H)=1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis showing the N—H···O and C—H···O interactions (dotted line) in the title compound. : symmetry code (i): -x+1, y+1/2, -z+1/2.

Crystal data

C6H5N2+·NO3 F(000) = 344
Mr = 167.13 Dx = 1.484 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1694 reflections
a = 6.3663 (2) Å θ = 2.8–27.5°
b = 13.2868 (9) Å µ = 0.12 mm1
c = 9.1019 (2) Å T = 298 K
β = 103.755 (1)° Block, colourless
V = 747.83 (6) Å3 0.10 × 0.05 × 0.05 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer 1694 independent reflections
Radiation source: fine-focus sealed tube 1349 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 2.8°
CCD profile fitting scans h = −8→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −17→15
Tmin = 0.910, Tmax = 1.000 l = −11→11
5151 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.0927P] where P = (Fo2 + 2Fc2)/3
1694 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.7551 (2) 0.46541 (8) 0.20815 (14) 0.0477 (4)
N3 0.7428 (2) 0.42233 (11) 0.08092 (16) 0.0447 (4)
N1 0.7453 (2) 0.66359 (10) 0.17652 (16) 0.0440 (4)
H1 0.7413 0.5962 0.1860 0.053*
C3 0.7627 (3) 0.86509 (12) 0.13720 (18) 0.0400 (4)
N2 0.7637 (3) 1.05763 (13) 0.0946 (2) 0.0648 (5)
C4 0.6008 (3) 0.82380 (12) 0.1963 (2) 0.0456 (4)
H4A 0.4974 0.8648 0.2230 0.055*
O2 0.7350 (2) 0.32899 (10) 0.07536 (16) 0.0631 (4)
C2 0.9185 (3) 0.80337 (13) 0.0992 (2) 0.0455 (4)
H2A 1.0287 0.8304 0.0603 0.055*
C5 0.5955 (3) 0.72140 (13) 0.2149 (2) 0.0466 (4)
H5A 0.4877 0.6924 0.2543 0.056*
O1 0.7392 (3) 0.47362 (11) −0.03265 (17) 0.0684 (5)
C1 0.9049 (3) 0.70149 (13) 0.1208 (2) 0.0474 (4)
H1A 1.0073 0.6587 0.0966 0.057*
C6 0.7672 (3) 0.97304 (14) 0.1142 (2) 0.0484 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0566 (8) 0.0384 (6) 0.0478 (7) −0.0022 (5) 0.0118 (6) −0.0026 (5)
N3 0.0376 (8) 0.0469 (8) 0.0511 (9) 0.0017 (6) 0.0136 (6) −0.0006 (6)
N1 0.0483 (8) 0.0339 (7) 0.0491 (8) −0.0012 (6) 0.0102 (6) 0.0000 (6)
C3 0.0417 (9) 0.0359 (8) 0.0399 (8) −0.0008 (6) 0.0047 (6) 0.0005 (6)
N2 0.0756 (13) 0.0408 (9) 0.0743 (12) −0.0017 (8) 0.0107 (10) 0.0084 (7)
C4 0.0448 (9) 0.0431 (9) 0.0513 (10) 0.0059 (7) 0.0165 (8) 0.0003 (7)
O2 0.0760 (10) 0.0423 (8) 0.0727 (10) −0.0014 (6) 0.0211 (8) −0.0115 (6)
C2 0.0419 (9) 0.0464 (9) 0.0506 (10) −0.0030 (7) 0.0157 (7) 0.0009 (7)
C5 0.0448 (10) 0.0457 (10) 0.0513 (10) −0.0031 (8) 0.0153 (8) 0.0032 (7)
O1 0.0877 (11) 0.0705 (10) 0.0542 (8) 0.0080 (8) 0.0313 (7) 0.0124 (7)
C1 0.0466 (10) 0.0447 (9) 0.0527 (10) 0.0046 (8) 0.0155 (8) −0.0042 (7)
C6 0.0504 (11) 0.0429 (10) 0.0495 (9) −0.0015 (7) 0.0071 (8) 0.0018 (7)

Geometric parameters (Å, º)

O3—N3 1.2774 (18) C3—C6 1.451 (2)
N3—O1 1.234 (2) N2—C6 1.137 (2)
N3—O2 1.2418 (19) C4—C5 1.373 (2)
N1—C5 1.334 (2) C4—H4A 0.9300
N1—C1 1.337 (2) C2—C1 1.374 (2)
N1—H1 0.9005 C2—H2A 0.9300
C3—C4 1.385 (2) C5—H5A 0.9300
C3—C2 1.392 (2) C1—H1A 0.9300
O1—N3—O2 121.67 (16) C3—C4—H4A 120.6
O1—N3—O3 119.80 (15) C1—C2—C3 118.17 (15)
O2—N3—O3 118.53 (14) C1—C2—H2A 120.9
C5—N1—C1 122.52 (15) C3—C2—H2A 120.9
C5—N1—H1 120.6 N1—C5—C4 119.88 (16)
C1—N1—H1 116.9 N1—C5—H5A 120.1
C4—C3—C2 120.22 (15) C4—C5—H5A 120.1
C4—C3—C6 119.33 (15) N1—C1—C2 120.31 (16)
C2—C3—C6 120.44 (15) N1—C1—H1A 119.8
C5—C4—C3 118.89 (15) C2—C1—H1A 119.8
C5—C4—H4A 120.6 N2—C6—C3 177.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3 0.90 1.75 2.6481 (18) 176
C4—H4A···O3i 0.93 2.29 3.220 (2) 179

Symmetry code: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2407).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  2. Dai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287. [DOI] [PMC free article] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011c). Adv. Mater. 23, 5658–5662. [DOI] [PubMed]
  5. Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780–12786. [DOI] [PubMed]
  6. Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947–11951. [DOI] [PubMed]
  7. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Xu, R.-J., Fu, D.-W., Dai, J., Zhang, Y., Ge, J.-Z. & Ye, H.-Y. (2011). Inorg. Chem. Commun. 14, 1093-1096.
  10. Zheng, W.-N. (2011). Acta Cryst. E67, m344. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020697/bx2407sup1.cif

e-68-o1695-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020697/bx2407Isup2.hkl

e-68-o1695-Isup2.hkl (83.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020697/bx2407Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES