Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1701–o1702. doi: 10.1107/S1600536812020831

rac-2-(2-Chloro-6-methyl­quinolin-3-yl)-2,3-dihydro­quinolin-4(1H)-one

Abdelmalek Bouraiou a, Sofiane Bouacida b,*, Carboni Bertrand c, Thierry Roisnel d, Ali Belfaitah a
PMCID: PMC3379295  PMID: 22719493

Abstract

In the title compound, C19H15ClN2O, the quinoline ring forms a dihedral angle of 43.24 (1)° with the benzene ring of the dihydroquinolinyl system. In the crystal, mol­ecules are linked through a single weak C—H⋯O hydrogen bond, forming ribbons which extend along (100), giving alternating zigzag mol­ecular layers which stack down the b-axis direction.

Related literature  

For applications of similar structures see: Chandrasekhar et al. (2007); Varma & Saini (1997); Donnelly & Farrell (1990); Hemanth Kumar et al. (2004). For the synthesis of the 2-amino­chalcone, see: Gao et al. (1996). For related structures, see: Bouraiou et al. (2008, 2011); Belfaitah et al. (2006); Benzerka et al. (2011).graphic file with name e-68-o1701-scheme1.jpg

Experimental  

Crystal data  

  • C19H15ClN2O

  • M r = 322.78

  • Orthorhombic, Inline graphic

  • a = 13.8912 (8) Å

  • b = 12.4572 (4) Å

  • c = 17.8617 (11) Å

  • V = 3090.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 K

  • 0.15 × 0.06 × 0.05 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 6664 measured reflections

  • 3537 independent reflections

  • 1696 reflections with I > 2σ(I)

  • R int = 0.072

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.169

  • S = 1.00

  • 3537 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020831/zs2200sup1.cif

e-68-o1701-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020831/zs2200Isup2.hkl

e-68-o1701-Isup2.hkl (170KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020831/zs2200Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.49 3.243 (5) 138

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to all personal of PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to MESRS and ANDRU (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique et l’Agence Nationale pour le Développement de la Recherche Universitaire) (Algeria) via the PNR programm for financial support.

supplementary crystallographic information

Comment

2-Substituted dihydroquinolinones have important medicinal properties as new chemical entities and also serve as building blocks for creating further diversity in SAR studies in various therapeutic areas (Chandrasekhar et al., 2007). Convenient synthesis of 2-aminochalcone and its amide derivatives and the ready cyclization of these compounds to 2-aryl-2,3-dihydroquinolin-4(1H)-ones have been widely explored (Varma & Saini, 1997; Donnelly & Farrell, 1990). Silica gel supported InCl3 (20 mol %) is a new solid-support catalyst that can be used under solvent-free conditions for the facile and efficient isomerization of 2-aminochalcones to the corresponding 2-aryl-2,3-dihydroquinolin-4(1H)-ones (Hemanth Kumar et al., 2004). As a part of a program directed toward the synthesis of new suitably functionalized heterocyclic compounds of potential biological activity (Bouraiou et al., 2008, 2011; Benzerka et al., 2011), we report herein the synthesis and structure determination of the title compound, C19H15ClN2 O.

In the title compound (Fig. 1), the quinoline ring forms a dihedral angle of 43.24 (1)° with the phenyl ring of the 2,3-dihydroquinolin-4(1H)-one moiety. The geometric parameters are in agreement with those of other structures possessing a quinolyl substituent, previously reported in the literature (Belfaitah et al., 2006; Benzerka et al., 2011). The crystal structure can be described as alterning zigzag ribbons which stack down the b axis of the unit cell (Fig. 2), these ribbons comprising molecules linked through a single weak intermolecular C17—H···O1 hydrogen bond (Table 1), and extending down a (Fig. 3). The hetero N2—H2 group has no acceptor in the crystal structure.

Experimental

2-Aminoacetophenone (1mmol) was first condensed with 2-chloro-3-formyl-6-methylquinoline (2 mmol) to give the corresponding 2-aminochalcone in 74% yield, according to the procedure described by Gao et al. (1996). In the next step, a mixture of 2-aminochalcone (100 mg) and 1 g of silica gel impregnated with indium(III) chloride (20 mol%, 13.6 mg) was irradiated in a domestic microwave oven at 360 W for 5 minutes. Under these conditions, the title compound was successfully synthesized in good yield (69%). Single crystals suitable for the X-ray diffraction analysis were obtained by dissolving the compound in a diisopropyl ether/CHCl3 solvent mixture and allowing the solution to slowly evaporate at room temperature.

Refinement

The N-bound H-atom (H2) was located in a difference-Fourier map and its positional parameters were refined isotropically. All other H atoms were introduced in calculated positions and treated as riding on their parent C atom, with C—H = 0.93, 0.96, 0.97 or 0.98 Å, with Uiso(H) = 1.2 or 1.5 Ueq(C). No H-bond acceptor could be located for the N2—H2 group.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A diagram of the layered zigzag packing in the crystal viewed down the a axis.

Fig. 3.

Fig. 3.

A part of crystal packing viewed down the b axis showing hydrogen-bond interactions as dashed lines.

Crystal data

C19H15ClN2O F(000) = 1344
Mr = 322.78 Dx = 1.387 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3949 reflections
a = 13.8912 (8) Å θ = 2.9–27.5°
b = 12.4572 (4) Å µ = 0.25 mm1
c = 17.8617 (11) Å T = 295 K
V = 3090.9 (3) Å3 Needle, colourless
Z = 8 0.15 × 0.06 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer 1696 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 diffractometer Rint = 0.072
Graphite monochromator θmax = 27.5°, θmin = 2.9°
Detector resolution: 9 pixels mm-1 h = −18→17
CCD rotation images, thick slices scans k = −16→16
6664 measured reflections l = −23→23
3537 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.5198P] where P = (Fo2 + 2Fc2)/3
3537 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.00123 (7) 0.53833 (7) 0.38618 (6) 0.0598 (3)
O1 1.00620 (19) 0.1322 (2) 0.36882 (17) 0.0724 (9)
N1 0.8795 (2) 0.6237 (2) 0.47797 (17) 0.0467 (7)
N2 0.7597 (2) 0.3073 (2) 0.34987 (16) 0.0461 (7)
C1 0.8911 (2) 0.5416 (2) 0.43385 (19) 0.0430 (8)
C2 0.8250 (2) 0.4560 (2) 0.42234 (18) 0.0408 (7)
C3 0.7405 (2) 0.4630 (2) 0.46099 (18) 0.0430 (8)
H3 0.6944 0.4096 0.4554 0.052*
C4 0.7221 (2) 0.5504 (2) 0.50953 (18) 0.0411 (8)
C5 0.6356 (2) 0.5626 (2) 0.54971 (19) 0.0453 (8)
H5 0.5879 0.5108 0.5447 0.054*
C6 0.6196 (3) 0.6486 (2) 0.59604 (19) 0.0474 (9)
C7 0.6938 (3) 0.7251 (3) 0.60359 (19) 0.0515 (9)
H7 0.6842 0.7834 0.6353 0.062*
C8 0.7791 (3) 0.7169 (2) 0.56608 (19) 0.0508 (9)
H8 0.8269 0.7682 0.5728 0.061*
C9 0.7940 (2) 0.6298 (2) 0.51708 (19) 0.0424 (8)
C10 0.5261 (3) 0.6631 (3) 0.6368 (2) 0.0687 (12)
H10A 0.4871 0.7146 0.6107 0.103*
H10B 0.5385 0.6883 0.6867 0.103*
H10C 0.4927 0.5957 0.6391 0.103*
C11 0.8477 (2) 0.3617 (2) 0.37226 (19) 0.0442 (8)
H11 0.8803 0.3883 0.3273 0.053*
C12 0.9131 (3) 0.2810 (2) 0.41094 (19) 0.0479 (9)
H12A 0.9741 0.3151 0.4226 0.058*
H12B 0.8838 0.2588 0.4577 0.058*
C13 0.9313 (3) 0.1834 (3) 0.3631 (2) 0.0475 (8)
C14 0.8524 (2) 0.1510 (2) 0.31357 (18) 0.0420 (8)
C15 0.7678 (2) 0.2110 (2) 0.31041 (18) 0.0412 (8)
C16 0.6899 (3) 0.1735 (3) 0.2677 (2) 0.0523 (9)
H16 0.633 0.2127 0.266 0.063*
C17 0.6976 (3) 0.0793 (3) 0.2284 (2) 0.0534 (9)
H17 0.6453 0.0546 0.2008 0.064*
C18 0.7825 (3) 0.0204 (3) 0.2292 (2) 0.0559 (9)
H18 0.7878 −0.0423 0.2012 0.067*
C19 0.8584 (3) 0.0556 (2) 0.2717 (2) 0.0505 (9)
H19 0.915 0.0157 0.2728 0.061*
H2 0.717 (3) 0.348 (2) 0.3321 (19) 0.05*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0485 (5) 0.0545 (5) 0.0763 (7) −0.0051 (4) 0.0144 (5) 0.0027 (5)
O1 0.0539 (18) 0.0643 (16) 0.099 (2) 0.0201 (13) −0.0134 (16) −0.0173 (15)
N1 0.0479 (18) 0.0388 (14) 0.0534 (17) −0.0029 (13) −0.0024 (14) −0.0010 (13)
N2 0.0408 (17) 0.0419 (15) 0.0554 (18) 0.0075 (12) −0.0080 (14) −0.0077 (13)
C1 0.0382 (19) 0.0412 (17) 0.050 (2) 0.0007 (14) 0.0014 (15) 0.0067 (15)
C2 0.0450 (19) 0.0353 (16) 0.0421 (18) 0.0008 (14) −0.0046 (16) 0.0041 (14)
C3 0.045 (2) 0.0360 (16) 0.0482 (19) −0.0027 (14) −0.0011 (16) −0.0015 (15)
C4 0.047 (2) 0.0352 (15) 0.0412 (18) 0.0007 (15) 0.0025 (15) 0.0043 (14)
C5 0.047 (2) 0.0378 (16) 0.051 (2) −0.0021 (14) −0.0016 (17) 0.0033 (15)
C6 0.057 (2) 0.0407 (17) 0.045 (2) 0.0054 (16) 0.0057 (17) 0.0048 (15)
C7 0.062 (2) 0.0438 (18) 0.049 (2) 0.0108 (17) −0.0084 (19) −0.0058 (16)
C8 0.059 (2) 0.0394 (17) 0.053 (2) −0.0029 (16) −0.0091 (19) −0.0063 (16)
C9 0.043 (2) 0.0382 (16) 0.0454 (19) −0.0004 (14) −0.0040 (16) 0.0028 (14)
C10 0.075 (3) 0.054 (2) 0.078 (3) 0.007 (2) 0.022 (2) −0.004 (2)
C11 0.042 (2) 0.0401 (17) 0.050 (2) 0.0005 (14) −0.0020 (16) −0.0038 (15)
C12 0.047 (2) 0.0439 (18) 0.053 (2) 0.0052 (15) −0.0083 (17) −0.0013 (15)
C13 0.042 (2) 0.0461 (18) 0.054 (2) 0.0036 (16) 0.0013 (17) 0.0044 (16)
C14 0.044 (2) 0.0397 (16) 0.0423 (19) −0.0002 (14) 0.0043 (15) 0.0014 (14)
C15 0.042 (2) 0.0396 (16) 0.0419 (18) 0.0000 (14) 0.0038 (15) 0.0004 (14)
C16 0.047 (2) 0.055 (2) 0.055 (2) −0.0028 (16) −0.0017 (17) −0.0058 (17)
C17 0.060 (3) 0.053 (2) 0.047 (2) −0.0127 (17) −0.0048 (19) −0.0062 (16)
C18 0.071 (3) 0.0454 (18) 0.051 (2) −0.0023 (18) 0.005 (2) −0.0066 (16)
C19 0.061 (2) 0.0423 (17) 0.048 (2) 0.0054 (16) 0.0067 (19) 0.0001 (16)

Geometric parameters (Å, º)

Cl1—C1 1.751 (3) C8—H8 0.93
O1—C13 1.224 (4) C10—H10A 0.96
N1—C1 1.301 (4) C10—H10B 0.96
N1—C9 1.380 (4) C10—H10C 0.96
N2—C15 1.395 (4) C11—C12 1.522 (4)
N2—C11 1.454 (4) C11—H11 0.98
N2—H2 0.85 (3) C12—C13 1.507 (4)
C1—C2 1.423 (4) C12—H12A 0.97
C2—C3 1.364 (5) C12—H12B 0.97
C2—C11 1.509 (4) C13—C14 1.466 (5)
C3—C4 1.415 (4) C14—C15 1.395 (4)
C3—H3 0.93 C14—C19 1.406 (4)
C4—C5 1.407 (5) C15—C16 1.404 (4)
C4—C9 1.412 (4) C16—C17 1.372 (4)
C5—C6 1.372 (4) C16—H16 0.93
C5—H5 0.93 C17—C18 1.389 (5)
C6—C7 1.410 (5) C17—H17 0.93
C6—C10 1.500 (5) C18—C19 1.372 (5)
C7—C8 1.365 (5) C18—H18 0.93
C7—H7 0.93 C19—H19 0.93
C8—C9 1.409 (4)
C1—N1—C9 117.2 (3) H10A—C10—H10C 109.5
C15—N2—C11 118.2 (3) H10B—C10—H10C 109.5
C15—N2—H2 112 (2) N2—C11—C2 110.5 (3)
C11—N2—H2 115 (2) N2—C11—C12 108.6 (3)
N1—C1—C2 126.6 (3) C2—C11—C12 111.7 (3)
N1—C1—Cl1 114.9 (2) N2—C11—H11 108.7
C2—C1—Cl1 118.4 (2) C2—C11—H11 108.7
C3—C2—C1 115.7 (3) C12—C11—H11 108.7
C3—C2—C11 122.0 (3) C13—C12—C11 112.1 (3)
C1—C2—C11 122.3 (3) C13—C12—H12A 109.2
C2—C3—C4 121.1 (3) C11—C12—H12A 109.2
C2—C3—H3 119.5 C13—C12—H12B 109.2
C4—C3—H3 119.5 C11—C12—H12B 109.2
C5—C4—C9 118.7 (3) H12A—C12—H12B 107.9
C5—C4—C3 123.4 (3) O1—C13—C14 122.8 (3)
C9—C4—C3 118.0 (3) O1—C13—C12 121.0 (3)
C6—C5—C4 122.0 (3) C14—C13—C12 116.1 (3)
C6—C5—H5 119 C15—C14—C19 118.8 (3)
C4—C5—H5 119 C15—C14—C13 120.5 (3)
C5—C6—C7 117.9 (3) C19—C14—C13 120.6 (3)
C5—C6—C10 121.8 (3) C14—C15—N2 120.5 (3)
C7—C6—C10 120.3 (3) C14—C15—C16 119.5 (3)
C8—C7—C6 122.4 (3) N2—C15—C16 119.9 (3)
C8—C7—H7 118.8 C17—C16—C15 120.2 (3)
C6—C7—H7 118.8 C17—C16—H16 119.9
C7—C8—C9 119.4 (3) C15—C16—H16 119.9
C7—C8—H8 120.3 C16—C17—C18 120.9 (3)
C9—C8—H8 120.3 C16—C17—H17 119.6
N1—C9—C8 118.9 (3) C18—C17—H17 119.6
N1—C9—C4 121.5 (3) C19—C18—C17 119.3 (3)
C8—C9—C4 119.6 (3) C19—C18—H18 120.4
C6—C10—H10A 109.5 C17—C18—H18 120.4
C6—C10—H10B 109.5 C18—C19—C14 121.3 (3)
H10A—C10—H10B 109.5 C18—C19—H19 119.4
C6—C10—H10C 109.5 C14—C19—H19 119.4
C9—N1—C1—C2 −1.0 (5) C15—N2—C11—C12 −50.0 (4)
C9—N1—C1—Cl1 −179.8 (2) C3—C2—C11—N2 21.5 (4)
N1—C1—C2—C3 1.2 (5) C1—C2—C11—N2 −160.2 (3)
Cl1—C1—C2—C3 180.0 (2) C3—C2—C11—C12 −99.5 (4)
N1—C1—C2—C11 −177.2 (3) C1—C2—C11—C12 78.8 (4)
Cl1—C1—C2—C11 1.6 (4) N2—C11—C12—C13 54.4 (4)
C1—C2—C3—C4 −0.5 (5) C2—C11—C12—C13 176.5 (3)
C11—C2—C3—C4 177.9 (3) C11—C12—C13—O1 151.2 (3)
C2—C3—C4—C5 178.9 (3) C11—C12—C13—C14 −32.2 (4)
C2—C3—C4—C9 −0.4 (5) O1—C13—C14—C15 178.7 (3)
C9—C4—C5—C6 −0.4 (5) C12—C13—C14—C15 2.1 (5)
C3—C4—C5—C6 −179.6 (3) O1—C13—C14—C19 2.3 (5)
C4—C5—C6—C7 −1.0 (5) C12—C13—C14—C19 −174.2 (3)
C4—C5—C6—C10 177.9 (3) C19—C14—C15—N2 −178.6 (3)
C5—C6—C7—C8 0.8 (5) C13—C14—C15—N2 5.0 (5)
C10—C6—C7—C8 −178.2 (3) C19—C14—C15—C16 2.0 (5)
C6—C7—C8—C9 0.9 (5) C13—C14—C15—C16 −174.4 (3)
C1—N1—C9—C8 179.3 (3) C11—N2—C15—C14 20.8 (4)
C1—N1—C9—C4 0.0 (5) C11—N2—C15—C16 −159.8 (3)
C7—C8—C9—N1 178.4 (3) C14—C15—C16—C17 −1.0 (5)
C7—C8—C9—C4 −2.3 (5) N2—C15—C16—C17 179.6 (3)
C5—C4—C9—N1 −178.6 (3) C15—C16—C17—C18 −1.0 (5)
C3—C4—C9—N1 0.7 (5) C16—C17—C18—C19 1.9 (6)
C5—C4—C9—C8 2.0 (5) C17—C18—C19—C14 −0.9 (5)
C3—C4—C9—C8 −178.7 (3) C15—C14—C19—C18 −1.0 (5)
C15—N2—C11—C2 −172.8 (3) C13—C14—C19—C18 175.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···N2 0.93 2.45 2.788 (4) 102
C11—H11···Cl1 0.98 2.72 3.074 (3) 102
C17—H17···O1i 0.93 2.49 3.243 (5) 138

Symmetry code: (i) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2200).

References

  1. Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.
  2. Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085. [DOI] [PMC free article] [PubMed]
  3. Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.
  4. Bouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.
  5. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  7. Chandrasekhar, S., Vijeender, K. & Sridhar, C. (2007). Tetrahedron Lett. 48, 4935–4937.
  8. Donnelly, J. A. & Farrell, D. F. (1990). J. Org. Chem. 55, 1757–1761.
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  11. Gao, F., Johnson, K. F. & Schlenoff, J. B. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 269–273.
  12. Hemanth Kumar, K., Muralidharan, D. & Perumal, P. T. (2004). Synthesis, 1, 63–69.
  13. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  14. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Varma, R. S. & Saini, R. K. (1997). Synlett, pp. 857–858.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020831/zs2200sup1.cif

e-68-o1701-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020831/zs2200Isup2.hkl

e-68-o1701-Isup2.hkl (170KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020831/zs2200Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES