Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1707. doi: 10.1107/S1600536812020491

2-tert-Butyl-4-chloro-5-[4-(2-fluoro­eth­oxy)benz­yloxy]pyridazin-3(2H)-one

Huihui Jing a, Tiantian Mou a, Xianzhong Zhang a,*
PMCID: PMC3379300  PMID: 22719498

Abstract

In the title compound, C17H20ClFN2O3, the dihedral angle between the pyridazine and benzene rings is 41.37 (10)°. In the crystal, there are no significant intermolecular interactions present. The terminal –CH2F group is disordered over two sets of sites with an occupancy ratio of 0.737 (2):0.263 (2).

Related literature  

For details of the synthesis, see: Mou et al. (2010, 2012). For possible applications of the title compound as a myocardial perfusion imaging agent for positron emission tomography (when labelled with 18F), see: Mou et al. (2011); Mou et al. (2012).graphic file with name e-68-o1707-scheme1.jpg

Experimental  

Crystal data  

  • C17H20ClFN2O3

  • M r = 354.80

  • Triclinic, Inline graphic

  • a = 8.7170 (14) Å

  • b = 9.5850 (16) Å

  • c = 11.8524 (19) Å

  • α = 110.475 (2)°

  • β = 107.185 (2)°

  • γ = 96.424 (3)°

  • V = 860.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 K

  • 0.47 × 0.38 × 0.35 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.892, T max = 0.918

  • 4337 measured reflections

  • 3090 independent reflections

  • 2788 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.094

  • S = 1.05

  • 3090 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020491/aa2046sup1.cif

e-68-o1707-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020491/aa2046Isup4.hkl

e-68-o1707-Isup4.hkl (151.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020491/aa2046Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Xuebin Deng, from the College of Chemistry, Beijing Normal University, for his kind help with the diffraction data collection. This work was supported by the National Natural Science Foundation of China (20871020), Beijing Natural Science Foundation (2092018) and the Fundamental Research Funds for the Central Universities.

supplementary crystallographic information

Comment

Myocardial uptake of the pyridaben analogues, which is correlated with blood flow, makes them potential myocardial perfusion imaging (MPI) agents for the positron emission tomography (PET) when labeled with 18F (Mou et al., 2010; Mou et al., 2011; Mou et al., 2012). Thus, the development of pyridaben analogues may lead to discover new valuable PET MPI agents.

The molecular structure of the title compound (measured at 150 K) is shown in Fig. 1. The dihedral angle between the pyridazine ring and the benzene ring is 41.37 (10)°. The terminal CH2F group is disordered between two positions with occupancies 0.737 (2) for C1F1 and 0.263 (2) for C1AF1A.

Experimental

The synthesis route is shown in Fig. 2. The solution of tert-butylammonium fluoride (1 mmol in 1 ml tetrahydrofuran) was stirred in a stream of nitrogen at 110 °C to remove the solvent. Then 2-tert-butyl-4-chloro-5-(4-(2-tosylethoxy-ethoxy)-benzyloxy)-2H-pyridazin-3-one (compound I, 0.30 mmol in 3 ml anhydrous CH3CN) was added to the above evaporation residue, and refluxed for 40 min at 90 °C. After concentration under reduced pressure, the residue was chromatographed over a column of silica gel and eluted with the mixture of dichloromethane and methanol (100:1). The product was obtained as white solid. The product was then recrystallized from the mixture of hexane and methanol (2:1) yielding colorless crystals of the title compound suitable for the single-crystal X-ray diffraction.

Refinement

The H atoms bound to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å for CH2 groups, 0.95 Å for aryl and 0.98 Å for methyl H atoms, Uiso(H) =1.2Ueq(C) for CH2 groups and aryl, and Uiso(H) =1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids. H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

The synthesis route of the title compound.

Crystal data

C17H20ClFN2O3 Z = 2
Mr = 354.80 F(000) = 372
Triclinic, P1 Dx = 1.370 Mg m3
Hall symbol: -P 1 Melting point: 396 K
a = 8.7170 (14) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.5850 (16) Å Cell parameters from 2518 reflections
c = 11.8524 (19) Å θ = 2.3–27.5°
α = 110.475 (2)° µ = 0.25 mm1
β = 107.185 (2)° T = 150 K
γ = 96.424 (3)° Column, colourless, colourless
V = 860.3 (2) Å3 0.47 × 0.38 × 0.35 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 3090 independent reflections
Radiation source: fine-focus sealed tube 2788 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
phi and ω scans θmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→10
Tmin = 0.892, Tmax = 0.918 k = −11→10
4337 measured reflections l = −14→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.4066P] where P = (Fo2 + 2Fc2)/3
3090 reflections (Δ/σ)max < 0.001
227 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7610 (4) 1.6895 (3) 0.6672 (3) 0.0356 (7) 0.737 (2)
H1A 0.7483 1.7463 0.7502 0.043* 0.737 (2)
H1B 0.8756 1.7279 0.6751 0.043* 0.737 (2)
F1 0.6489 (2) 1.71415 (19) 0.56807 (19) 0.0563 (5) 0.737 (2)
C1A 0.6652 (12) 1.6621 (10) 0.6292 (9) 0.0356 (7) 0.263 (2)
H1A1 0.5919 1.6389 0.5400 0.043* 0.263 (2)
H1A2 0.6036 1.6957 0.6880 0.043* 0.263 (2)
F1A 0.8073 (7) 1.7730 (6) 0.6664 (5) 0.0563 (5) 0.263 (2)
C2 0.7295 (3) 1.5215 (2) 0.63796 (19) 0.0357 (5)
H2A 0.7927 1.5042 0.7142 0.043*
H2B 0.6104 1.4780 0.6141 0.043*
C3 0.7804 (2) 1.29834 (18) 0.49589 (16) 0.0253 (4)
C4 0.8406 (2) 1.2381 (2) 0.39752 (17) 0.0301 (4)
H4 0.8787 1.3019 0.3607 0.036*
C5 0.8452 (2) 1.08544 (19) 0.35314 (16) 0.0278 (4)
H5 0.8883 1.0456 0.2867 0.033*
C6 0.7879 (2) 0.98912 (18) 0.40407 (15) 0.0224 (4)
C7 0.7268 (2) 1.05060 (19) 0.50116 (16) 0.0267 (4)
H7 0.6861 0.9860 0.5363 0.032*
C8 0.7234 (2) 1.2049 (2) 0.54876 (17) 0.0276 (4)
H8 0.6827 1.2454 0.6165 0.033*
C9 0.7940 (2) 0.82347 (19) 0.35594 (16) 0.0271 (4)
H9A 0.9074 0.8134 0.3944 0.032*
H9B 0.7176 0.7643 0.3796 0.032*
C10 0.74817 (19) 0.62230 (17) 0.15061 (16) 0.0205 (3)
C11 0.69499 (19) 0.56701 (17) 0.01958 (15) 0.0196 (3)
C12 0.69623 (19) 0.41371 (18) −0.05951 (15) 0.0205 (3)
C13 0.8067 (2) 0.52043 (18) 0.20730 (16) 0.0244 (4)
H13 0.8450 0.5560 0.2986 0.029*
C14 0.7659 (2) 0.16475 (18) −0.05844 (16) 0.0224 (4)
C15 0.8931 (2) 0.1704 (2) −0.12319 (19) 0.0319 (4)
H15A 0.8604 0.2209 −0.1825 0.048*
H15B 0.8984 0.0657 −0.1714 0.048*
H15C 1.0020 0.2281 −0.0571 0.048*
C16 0.5943 (2) 0.06939 (19) −0.15633 (18) 0.0324 (4)
H16A 0.5141 0.0780 −0.1127 0.049*
H16B 0.5978 −0.0383 −0.1945 0.049*
H16C 0.5612 0.1075 −0.2244 0.049*
C17 0.8217 (2) 0.09524 (19) 0.03935 (18) 0.0308 (4)
H17A 0.9307 0.1564 0.1034 0.046*
H17B 0.8286 −0.0101 −0.0049 0.046*
H17C 0.7419 0.0946 0.0827 0.046*
Cl1 0.62207 (5) 0.67867 (4) −0.06075 (4) 0.02475 (13)
N1 0.75585 (16) 0.32789 (14) 0.01074 (12) 0.0199 (3)
N2 0.81035 (17) 0.38114 (15) 0.14042 (13) 0.0241 (3)
O1 0.78194 (18) 1.45135 (14) 0.53292 (12) 0.0356 (3)
O2 0.74477 (15) 0.76678 (12) 0.21681 (10) 0.0246 (3)
O3 0.64984 (16) 0.36158 (13) −0.17774 (11) 0.0292 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0526 (19) 0.0305 (15) 0.0392 (17) 0.0225 (17) 0.0274 (16) 0.0189 (13)
F1 0.0628 (11) 0.0390 (9) 0.0698 (12) 0.0205 (8) 0.0142 (9) 0.0304 (9)
C1A 0.0526 (19) 0.0305 (15) 0.0392 (17) 0.0225 (17) 0.0274 (16) 0.0189 (13)
F1A 0.0628 (11) 0.0390 (9) 0.0698 (12) 0.0205 (8) 0.0142 (9) 0.0304 (9)
C2 0.0596 (13) 0.0248 (9) 0.0333 (10) 0.0188 (9) 0.0280 (10) 0.0119 (8)
C3 0.0340 (10) 0.0181 (8) 0.0221 (8) 0.0079 (7) 0.0098 (7) 0.0057 (7)
C4 0.0469 (11) 0.0229 (9) 0.0271 (9) 0.0100 (8) 0.0203 (8) 0.0114 (7)
C5 0.0380 (10) 0.0247 (9) 0.0220 (9) 0.0098 (7) 0.0151 (8) 0.0068 (7)
C6 0.0266 (9) 0.0197 (8) 0.0159 (8) 0.0058 (7) 0.0038 (7) 0.0048 (6)
C7 0.0355 (10) 0.0225 (8) 0.0239 (9) 0.0055 (7) 0.0131 (7) 0.0097 (7)
C8 0.0378 (10) 0.0253 (9) 0.0225 (9) 0.0104 (7) 0.0160 (8) 0.0075 (7)
C9 0.0376 (10) 0.0228 (9) 0.0176 (8) 0.0094 (7) 0.0076 (7) 0.0059 (7)
C10 0.0196 (8) 0.0163 (7) 0.0229 (8) 0.0034 (6) 0.0071 (7) 0.0057 (7)
C11 0.0197 (8) 0.0184 (8) 0.0220 (8) 0.0052 (6) 0.0076 (6) 0.0095 (7)
C12 0.0212 (8) 0.0206 (8) 0.0207 (8) 0.0056 (6) 0.0095 (7) 0.0077 (7)
C13 0.0294 (9) 0.0203 (8) 0.0178 (8) 0.0068 (7) 0.0044 (7) 0.0042 (7)
C14 0.0243 (8) 0.0166 (8) 0.0237 (9) 0.0072 (6) 0.0085 (7) 0.0046 (7)
C15 0.0329 (10) 0.0327 (10) 0.0375 (10) 0.0167 (8) 0.0188 (8) 0.0147 (8)
C16 0.0280 (10) 0.0188 (8) 0.0366 (10) 0.0057 (7) 0.0058 (8) 0.0003 (8)
C17 0.0422 (11) 0.0195 (8) 0.0308 (10) 0.0119 (8) 0.0126 (8) 0.0094 (7)
Cl1 0.0323 (2) 0.0221 (2) 0.0243 (2) 0.01014 (16) 0.01102 (17) 0.01263 (17)
N1 0.0233 (7) 0.0167 (7) 0.0173 (7) 0.0053 (5) 0.0062 (6) 0.0048 (5)
N2 0.0277 (8) 0.0217 (7) 0.0188 (7) 0.0063 (6) 0.0046 (6) 0.0065 (6)
O1 0.0646 (9) 0.0198 (6) 0.0329 (7) 0.0160 (6) 0.0302 (7) 0.0104 (5)
O2 0.0353 (7) 0.0166 (6) 0.0177 (6) 0.0091 (5) 0.0069 (5) 0.0035 (5)
O3 0.0432 (7) 0.0261 (6) 0.0187 (6) 0.0131 (5) 0.0117 (5) 0.0075 (5)

Geometric parameters (Å, º)

C1—F1 1.400 (4) C9—H9B 0.9900
C1—C2 1.497 (3) C10—O2 1.3405 (19)
C1—H1A 0.9900 C10—C11 1.361 (2)
C1—H1B 0.9900 C10—C13 1.426 (2)
C1A—F1A 1.383 (11) C11—C12 1.444 (2)
C1A—C2 1.541 (9) C11—Cl1 1.7215 (16)
C1A—H1A1 0.9900 C12—O3 1.2276 (19)
C1A—H1A2 0.9900 C12—N1 1.400 (2)
C2—O1 1.425 (2) C13—N2 1.302 (2)
C2—H2A 0.9900 C13—H13 0.9500
C2—H2B 0.9900 C14—N1 1.5169 (19)
C3—O1 1.373 (2) C14—C17 1.518 (2)
C3—C8 1.385 (2) C14—C15 1.529 (2)
C3—C4 1.388 (2) C14—C16 1.531 (2)
C4—C5 1.381 (2) C15—H15A 0.9800
C4—H4 0.9500 C15—H15B 0.9800
C5—C6 1.390 (2) C15—H15C 0.9800
C5—H5 0.9500 C16—H16A 0.9800
C6—C7 1.383 (2) C16—H16B 0.9800
C6—C9 1.501 (2) C16—H16C 0.9800
C7—C8 1.393 (2) C17—H17A 0.9800
C7—H7 0.9500 C17—H17B 0.9800
C8—H8 0.9500 C17—H17C 0.9800
C9—O2 1.450 (2) N1—N2 1.3469 (18)
C9—H9A 0.9900
F1—C1—C2 109.6 (2) H9A—C9—H9B 108.6
F1—C1—H1A 109.8 O2—C10—C11 118.74 (14)
C2—C1—H1A 109.8 O2—C10—C13 124.85 (14)
F1—C1—H1B 109.8 C11—C10—C13 116.40 (14)
C2—C1—H1B 109.8 C10—C11—C12 122.61 (14)
H1A—C1—H1B 108.2 C10—C11—Cl1 121.01 (12)
F1A—C1A—C2 103.9 (6) C12—C11—Cl1 116.38 (12)
F1A—C1A—H1A1 111.0 O3—C12—N1 122.25 (14)
C2—C1A—H1A1 111.0 O3—C12—C11 123.81 (15)
F1A—C1A—H1A2 111.0 N1—C12—C11 113.94 (14)
C2—C1A—H1A2 111.0 N2—C13—C10 123.44 (15)
H1A1—C1A—H1A2 109.0 N2—C13—H13 118.3
O1—C2—C1 106.72 (17) C10—C13—H13 118.3
O1—C2—C1A 110.7 (4) N1—C14—C17 109.19 (13)
O1—C2—H2A 110.4 N1—C14—C15 108.07 (13)
C1—C2—H2A 110.4 C17—C14—C15 109.53 (14)
C1A—C2—H2A 130.3 N1—C14—C16 109.30 (13)
O1—C2—H2B 110.4 C17—C14—C16 108.73 (14)
C1—C2—H2B 110.4 C15—C14—C16 111.99 (15)
C1A—C2—H2B 81.7 C14—C15—H15A 109.5
H2A—C2—H2B 108.6 C14—C15—H15B 109.5
O1—C3—C8 124.76 (15) H15A—C15—H15B 109.5
O1—C3—C4 115.27 (15) C14—C15—H15C 109.5
C8—C3—C4 119.97 (15) H15A—C15—H15C 109.5
C5—C4—C3 120.07 (16) H15B—C15—H15C 109.5
C5—C4—H4 120.0 C14—C16—H16A 109.5
C3—C4—H4 120.0 C14—C16—H16B 109.5
C4—C5—C6 121.06 (16) H16A—C16—H16B 109.5
C4—C5—H5 119.5 C14—C16—H16C 109.5
C6—C5—H5 119.5 H16A—C16—H16C 109.5
C7—C6—C5 118.15 (15) H16B—C16—H16C 109.5
C7—C6—C9 121.02 (15) C14—C17—H17A 109.5
C5—C6—C9 120.83 (15) C14—C17—H17B 109.5
C6—C7—C8 121.73 (16) H17A—C17—H17B 109.5
C6—C7—H7 119.1 C14—C17—H17C 109.5
C8—C7—H7 119.1 H17A—C17—H17C 109.5
C3—C8—C7 119.02 (16) H17B—C17—H17C 109.5
C3—C8—H8 120.5 N2—N1—C12 124.27 (13)
C7—C8—H8 120.5 N2—N1—C14 115.40 (12)
O2—C9—C6 107.02 (13) C12—N1—C14 120.33 (13)
O2—C9—H9A 110.3 C13—N2—N1 119.34 (14)
C6—C9—H9A 110.3 C3—O1—C2 117.83 (13)
O2—C9—H9B 110.3 C10—O2—C9 118.79 (12)
C6—C9—H9B 110.3

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2046).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Mou, T. T., Jing, H. H., Yang, W. J., Fang, W., Peng, C., Guo, F., Zhang, X. Z., Pang, Y. & Ma, Y. C. (2010). Bioorg. Med. Chem. 18, 1312–1320. [DOI] [PubMed]
  3. Mou, T. T., Zhao, Z. Q., Fang, W., Peng, C., Guo, F., Liu, B. L., Ma, Y. C. & Zhang, X. Z. (2012). J. Nucl. Med. 53, 472–479. [DOI] [PubMed]
  4. Mou, T. T., Zhao, Z. Q., Fang, W., Peng, C., Zhang, X. Z. & Liu, B. L. (2011). J. Nucl. Med. 52(Suppl. 1), 77.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020491/aa2046sup1.cif

e-68-o1707-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020491/aa2046Isup4.hkl

e-68-o1707-Isup4.hkl (151.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020491/aa2046Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES