Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1709. doi: 10.1107/S1600536812020442

7-(6-Bromo­hex­yloxy)-4-methyl-2H-chromen-2-one

Hui-Zhen Zhang a, Qing-Xia Li a, Ben-Tao Yin a, Cheng-He Zhou a,*
PMCID: PMC3379302  PMID: 22719500

Abstract

In the title mol­ecule, C16H19BrO3, all non-H atoms apart from the Br atom are approximately coplanar, with a maximum deviation of 0.242 (4) Å. The C—C—C—Br torsion angle is 66.5 (4)°.

Related literature  

For the pharmacological activity of coumarin compounds, see: Wu et al. (2009); Shi & Zhou (2011). For details of the synthesis, see: Shi et al. (2011). For a related structure, see: Zhang et al. (2011).graphic file with name e-68-o1709-scheme1.jpg

Experimental  

Crystal data  

  • C16H19BrO3

  • M r = 339.22

  • Monoclinic, Inline graphic

  • a = 15.681 (5) Å

  • b = 9.540 (3) Å

  • c = 22.104 (7) Å

  • β = 110.201 (6)°

  • V = 3103.3 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.65 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.593, T max = 0.692

  • 8381 measured reflections

  • 3051 independent reflections

  • 1921 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.115

  • S = 1.01

  • 3051 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Sheldrick, 2008); cell refinement: SAINT (Sheldrick, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020442/lh5459sup1.cif

e-68-o1709-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020442/lh5459Isup2.hkl

e-68-o1709-Isup2.hkl (149.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020442/lh5459Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (No. 21172181), the Key Program of the Natural Science Foundation of Chongqing (CSTC2012jjB10026), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Research Funds for the Central Universities (XDJK2012B026).

supplementary crystallographic information

Comment

Coumarin compounds are important in medicinal chemistry due to their extensive potential applications in antibacterial, antifungal, antiviral, anti-tubercular, anti-malarial, anticancer and anti-inflammatory fields (Wu, et al., 2009; Shi & Zhou, 2011). Our interest is to develop novel coumarin compounds as antimicrobial agents and some structral related coumarin-triazoles have been reported as potential bioactive agents (Shi, et al., 2011; Zhang, et al., 2011). Herein, we report the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. With the exception of the Br atom, all non-hydrogen atoms are approximately co-planar with a maximum deviation of 0.242 (4)Å (C16). The C14—C15—C16—Br1 torsion angle is 66.5 (4)Å.

Experimental

Compound (I) was prepared according to the procedure of Shi & Zhou (2011). Single crystals were grown by slow evaporation of a solution of (I) in CHCl3 at room temperature.

Refinement

H atoms were placed at calculated position with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene). The Uiso(H) values were set to 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

Crystal data

C16H19BrO3 F(000) = 1392
Mr = 339.22 Dx = 1.452 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2005 reflections
a = 15.681 (5) Å θ = 2.6–22.1°
b = 9.540 (3) Å µ = 2.65 mm1
c = 22.104 (7) Å T = 296 K
β = 110.201 (6)° Block, colorless
V = 3103.3 (18) Å3 0.22 × 0.18 × 0.15 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 3051 independent reflections
Radiation source: fine-focus sealed tube 1921 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
φ and ω scans θmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −19→19
Tmin = 0.593, Tmax = 0.692 k = −9→11
8381 measured reflections l = −27→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0527P)2 + 2.7774P] where P = (Fo2 + 2Fc2)/3
3051 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.13272 (3) 0.92653 (5) 0.02243 (2) 0.0880 (2)
C1 0.7117 (2) −0.1670 (3) 0.24911 (16) 0.0537 (8)
C2 0.6618 (2) −0.2939 (3) 0.22745 (15) 0.0545 (8)
H2A 0.6926 −0.3787 0.2379 0.065*
C3 0.5727 (2) −0.2965 (3) 0.19283 (15) 0.0513 (8)
C4 0.5235 (3) −0.4315 (3) 0.1708 (2) 0.0741 (11)
H4A 0.5654 −0.5082 0.1847 0.111*
H4B 0.4973 −0.4319 0.1246 0.111*
H4C 0.4763 −0.4412 0.1889 0.111*
C5 0.5242 (2) −0.1647 (3) 0.17747 (14) 0.0442 (7)
C6 0.57263 (19) −0.0413 (3) 0.19839 (14) 0.0427 (7)
C7 0.5329 (2) 0.0882 (3) 0.18675 (15) 0.0478 (7)
H7A 0.5674 0.1687 0.2012 0.057*
C8 0.4408 (2) 0.0971 (3) 0.15309 (15) 0.0514 (8)
C9 0.3895 (2) −0.0240 (3) 0.13091 (15) 0.0527 (8)
H9A 0.3274 −0.0181 0.1083 0.063*
C10 0.4319 (2) −0.1512 (3) 0.14297 (15) 0.0528 (8)
H10A 0.3978 −0.2316 0.1275 0.063*
C11 0.3099 (2) 0.2471 (3) 0.11206 (17) 0.0602 (9)
H11A 0.2765 0.1966 0.1348 0.072*
H11B 0.2915 0.2118 0.0683 0.072*
C12 0.2914 (2) 0.4009 (3) 0.11200 (19) 0.0612 (9)
H12A 0.3306 0.4497 0.0932 0.073*
H12B 0.3073 0.4324 0.1563 0.073*
C13 0.1935 (2) 0.4414 (3) 0.07516 (16) 0.0557 (8)
H13A 0.1779 0.4142 0.0303 0.067*
H13B 0.1537 0.3911 0.0928 0.067*
C14 0.1785 (2) 0.5971 (3) 0.07899 (17) 0.0584 (9)
H14A 0.1936 0.6231 0.1239 0.070*
H14B 0.2199 0.6466 0.0625 0.070*
C15 0.0828 (2) 0.6447 (3) 0.04209 (17) 0.0579 (8)
H15A 0.0713 0.6332 −0.0036 0.069*
H15B 0.0407 0.5844 0.0533 0.069*
C16 0.0638 (2) 0.7941 (4) 0.05454 (19) 0.0674 (10)
H16A 0.0790 0.8079 0.1005 0.081*
H16B −0.0006 0.8128 0.0339 0.081*
O1 0.79161 (16) −0.1577 (2) 0.27985 (13) 0.0766 (8)
O2 0.66442 (13) −0.0436 (2) 0.23286 (10) 0.0503 (5)
O3 0.40587 (14) 0.2292 (2) 0.14399 (12) 0.0649 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0703 (3) 0.0743 (3) 0.1032 (4) 0.0001 (2) 0.0092 (2) 0.0270 (2)
C1 0.0448 (19) 0.053 (2) 0.059 (2) 0.0053 (15) 0.0121 (16) 0.0118 (16)
C2 0.047 (2) 0.0450 (18) 0.063 (2) 0.0062 (15) 0.0084 (16) 0.0043 (15)
C3 0.050 (2) 0.0476 (18) 0.0523 (19) 0.0003 (14) 0.0122 (15) −0.0034 (15)
C4 0.061 (2) 0.055 (2) 0.088 (3) 0.0001 (17) 0.003 (2) −0.0139 (19)
C5 0.0413 (17) 0.0469 (17) 0.0416 (16) 0.0011 (13) 0.0107 (14) −0.0022 (13)
C6 0.0331 (16) 0.0509 (18) 0.0416 (17) 0.0017 (13) 0.0097 (13) 0.0029 (13)
C7 0.0411 (17) 0.0485 (18) 0.0521 (19) −0.0018 (14) 0.0141 (14) 0.0044 (14)
C8 0.0445 (18) 0.056 (2) 0.0533 (19) 0.0111 (15) 0.0160 (15) 0.0096 (15)
C9 0.0376 (17) 0.059 (2) 0.0545 (19) 0.0040 (15) 0.0065 (15) −0.0024 (16)
C10 0.0442 (18) 0.0516 (19) 0.057 (2) −0.0047 (14) 0.0096 (15) −0.0085 (15)
C11 0.0435 (19) 0.064 (2) 0.070 (2) 0.0135 (16) 0.0152 (16) 0.0051 (18)
C12 0.048 (2) 0.057 (2) 0.077 (2) 0.0098 (15) 0.0192 (18) 0.0057 (17)
C13 0.0495 (19) 0.057 (2) 0.058 (2) 0.0099 (15) 0.0151 (16) 0.0016 (16)
C14 0.0501 (19) 0.055 (2) 0.065 (2) 0.0062 (15) 0.0135 (17) 0.0026 (16)
C15 0.052 (2) 0.056 (2) 0.063 (2) 0.0062 (16) 0.0154 (17) 0.0027 (16)
C16 0.057 (2) 0.065 (2) 0.080 (3) 0.0135 (17) 0.0220 (19) 0.0094 (19)
O1 0.0404 (14) 0.0630 (16) 0.104 (2) 0.0007 (11) −0.0028 (14) 0.0119 (14)
O2 0.0358 (12) 0.0467 (12) 0.0610 (14) −0.0013 (9) 0.0070 (10) 0.0049 (10)
O3 0.0437 (13) 0.0537 (13) 0.0888 (17) 0.0102 (10) 0.0120 (12) 0.0073 (12)

Geometric parameters (Å, º)

Br1—C16 1.949 (4) C9—H9A 0.9300
C1—O1 1.205 (4) C10—H10A 0.9300
C1—O2 1.371 (4) C11—O3 1.435 (4)
C1—C2 1.431 (4) C11—C12 1.496 (4)
C2—C3 1.341 (4) C11—H11A 0.9700
C2—H2A 0.9300 C11—H11B 0.9700
C3—C5 1.448 (4) C12—C13 1.520 (4)
C3—C4 1.494 (4) C12—H12A 0.9700
C4—H4A 0.9600 C12—H12B 0.9700
C4—H4B 0.9600 C13—C14 1.511 (4)
C4—H4C 0.9600 C13—H13A 0.9700
C5—C6 1.391 (4) C13—H13B 0.9700
C5—C10 1.390 (4) C14—C15 1.510 (4)
C6—O2 1.377 (3) C14—H14A 0.9700
C6—C7 1.367 (4) C14—H14B 0.9700
C7—C8 1.380 (4) C15—C16 1.501 (5)
C7—H7A 0.9300 C15—H15A 0.9700
C8—O3 1.362 (4) C15—H15B 0.9700
C8—C9 1.397 (4) C16—H16A 0.9700
C9—C10 1.365 (4) C16—H16B 0.9700
O1—C1—O2 116.6 (3) O3—C11—H11B 110.4
O1—C1—C2 126.4 (3) C12—C11—H11B 110.4
O2—C1—C2 117.0 (3) H11A—C11—H11B 108.6
C3—C2—C1 123.2 (3) C11—C12—C13 114.1 (3)
C3—C2—H2A 118.4 C11—C12—H12A 108.7
C1—C2—H2A 118.4 C13—C12—H12A 108.7
C2—C3—C5 118.5 (3) C11—C12—H12B 108.7
C2—C3—C4 121.4 (3) C13—C12—H12B 108.7
C5—C3—C4 120.1 (3) H12A—C12—H12B 107.6
C3—C4—H4A 109.5 C14—C13—C12 111.6 (3)
C3—C4—H4B 109.5 C14—C13—H13A 109.3
H4A—C4—H4B 109.5 C12—C13—H13A 109.3
C3—C4—H4C 109.5 C14—C13—H13B 109.3
H4A—C4—H4C 109.5 C12—C13—H13B 109.3
H4B—C4—H4C 109.5 H13A—C13—H13B 108.0
C6—C5—C10 116.7 (3) C15—C14—C13 114.2 (3)
C6—C5—C3 118.4 (3) C15—C14—H14A 108.7
C10—C5—C3 124.9 (3) C13—C14—H14A 108.7
O2—C6—C7 116.1 (3) C15—C14—H14B 108.7
O2—C6—C5 121.1 (3) C13—C14—H14B 108.7
C7—C6—C5 122.8 (3) H14A—C14—H14B 107.6
C8—C7—C6 118.7 (3) C16—C15—C14 114.2 (3)
C8—C7—H7A 120.6 C16—C15—H15A 108.7
C6—C7—H7A 120.6 C14—C15—H15A 108.7
O3—C8—C7 115.5 (3) C16—C15—H15B 108.7
O3—C8—C9 124.1 (3) C14—C15—H15B 108.7
C7—C8—C9 120.5 (3) H15A—C15—H15B 107.6
C10—C9—C8 118.9 (3) C15—C16—Br1 112.3 (2)
C10—C9—H9A 120.5 C15—C16—H16A 109.2
C8—C9—H9A 120.5 Br1—C16—H16A 109.2
C9—C10—C5 122.3 (3) C15—C16—H16B 109.2
C9—C10—H10A 118.8 Br1—C16—H16B 109.2
C5—C10—H10A 118.8 H16A—C16—H16B 107.9
O3—C11—C12 106.6 (3) C1—O2—C6 121.8 (2)
O3—C11—H11A 110.4 C8—O3—C11 118.9 (3)
C12—C11—H11A 110.4
O1—C1—C2—C3 −179.4 (3) C7—C8—C9—C10 −0.1 (5)
O2—C1—C2—C3 −0.1 (5) C8—C9—C10—C5 1.1 (5)
C1—C2—C3—C5 −1.1 (5) C6—C5—C10—C9 −1.3 (5)
C1—C2—C3—C4 179.5 (3) C3—C5—C10—C9 178.8 (3)
C2—C3—C5—C6 1.1 (4) O3—C11—C12—C13 175.4 (3)
C4—C3—C5—C6 −179.5 (3) C11—C12—C13—C14 177.9 (3)
C2—C3—C5—C10 −179.0 (3) C12—C13—C14—C15 178.8 (3)
C4—C3—C5—C10 0.5 (5) C13—C14—C15—C16 170.5 (3)
C10—C5—C6—O2 −179.9 (3) C14—C15—C16—Br1 66.5 (4)
C3—C5—C6—O2 0.0 (4) O1—C1—O2—C6 −179.3 (3)
C10—C5—C6—C7 0.5 (4) C2—C1—O2—C6 1.3 (4)
C3—C5—C6—C7 −179.5 (3) C7—C6—O2—C1 178.3 (3)
O2—C6—C7—C8 −179.2 (3) C5—C6—O2—C1 −1.3 (4)
C5—C6—C7—C8 0.3 (5) C7—C8—O3—C11 −177.1 (3)
C6—C7—C8—O3 179.3 (3) C9—C8—O3—C11 2.7 (5)
C6—C7—C8—C9 −0.6 (5) C12—C11—O3—C8 177.3 (3)
O3—C8—C9—C10 −179.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5459).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Shi, Y. & Zhou, C.-H. (2011). Bioorg. Med. Chem. Lett. 21, 956–960.
  4. Shi, Y., Zhou, C.-H., Zhou, X.-D., Geng, R.-X. & Ji, Q.-G. (2011). Acta Pharm. Sin. 46, 798–810. [PubMed]
  5. Wu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236–4260. [DOI] [PubMed]
  6. Zhang, Y.-Y., Shi, Y. & Zhou, C.-H. (2011). Acta Cryst. E67, o892. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020442/lh5459sup1.cif

e-68-o1709-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020442/lh5459Isup2.hkl

e-68-o1709-Isup2.hkl (149.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020442/lh5459Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES