Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):o1712–o1713. doi: 10.1107/S1600536812021022

(E)-3-Dimethyl­amino-1-(2,5-dimethyl­thio­phen-3-yl)prop-2-en-1-one

Mostafa M Ghorab a, Mansour S Al-Said a, Hazem A Ghabbour b, Tze Shyang Chia c, Hoong-Kun Fun c,*,
PMCID: PMC3379305  PMID: 22719503

Abstract

In the title compound, C11H15NOS, the 3-(dimethyl­amino)­prop-2-en-1-one unit is approximately planar [maximum deviation = 0.0975 (14) Å] and its mean plane of seven non-H atoms makes a dihedral angle of 6.96 (10)° with the thio­phene ring. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into inversion dimers with R 2 2(14) ring motifs. The dimers are stacked along the c axis through C—H⋯π inter­actions. The two methyl groups, attached to the thio­phene ring and the amino N atom, are each disordered over two orientations, with site-occupancy ratios of 0.59 (4):0.41 (4) and 0.74 (4):0.26 (4), respectively.

Related literature  

For background to and the biological activity of thio­phene derivatives, see: Ghorab et al. (2006); Al-Said et al. (2011); Shaaban et al. (2010); Krantz et al. (1990); Kikugawa & Ichino (1973); Gogte et al. (1967); Medower et al. (2008); Ghorab et al. (1998); Hassan et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1712-scheme1.jpg

Experimental  

Crystal data  

  • C11H15NOS

  • M r = 209.30

  • Triclinic, Inline graphic

  • a = 5.9114 (2) Å

  • b = 7.5424 (2) Å

  • c = 13.9940 (4) Å

  • α = 81.274 (2)°

  • β = 88.828 (3)°

  • γ = 69.119 (3)°

  • V = 575.83 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.24 mm−1

  • T = 296 K

  • 0.82 × 0.15 × 0.07 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.260, T max = 0.859

  • 7188 measured reflections

  • 1897 independent reflections

  • 1650 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.114

  • S = 1.08

  • 1897 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021022/is5136sup1.cif

e-68-o1712-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021022/is5136Isup2.hkl

e-68-o1712-Isup2.hkl (93.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021022/is5136Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the S1/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.96 2.46 3.410 (3) 172
C5—H5BCg1ii 0.96 2.77 3.641 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MMG, MSAS and HAG acknowledge the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

As part of a program designed to investigate the biological activity of tricyclic and tetracyclic heterocyclic systems containing a thiophene ring as the central nucleus (Ghorab et al., 2006), recently we have put forward a convenient way to synthesize thiophene derivatives as anticancer agents (Al-Said et al., 2011; Shaaban et al., 2010). A survey of the literature showed that thiophene derivatives possess antihypertensive action (Krantz et al., 1990), platelet aggregation inhibition (Kikugawa & Ichino, 1973) and antineoplastic activities (Gogte et al., 1967; Medower et al., 2008). In addition, several nitrogen, oxygen and sulfur-containing heterocyclic compounds incorporating thiophene residues were found to possess interesting biological properties (Ghorab et al., 1998; Hassan et al., 1998). In continuation of our work on the synthesis of a novel thiophene derivative which might show significant anticancer activity, the title compound was prepared and its crystal structure is now reported.

The molecular structure of the title compound is shown in Fig. 1. The mean plane of dimethylthiophene ring [S1/C1–C6; maximum deviation = 0.0180 (12) Å at atom C6] forms a dihedral angle of 6.63 (12)° with the mean plane of the rest non-H atoms [O1/N1/C7–C11; maximum deviation = 0.0975 (14) Å at atom O1]. In the molecule, the hydrogen atoms attached to atoms C5 and C11 are each disordered over two positions with site-occupancy ratios of (H5A, H5B, H5C):(H5X, H5Y, H5Z) = 0.59 (4):0.41 (4) and (H11A, H11B, H11C):(H11X, H11Y, H11Z) = 0.74 (4):0.26 (4), respectively.

In the crystal (Fig. 2), molecules are linked by pairs of intermolecular C10—H10A···O1 hydrogen bonds into inversion dimers with an R22(14) ring motif (Bernstein et al., 1995) and are further stacked parallel to the a axis. The crystal packing is further stabilized by C—H···π interaction (Table 1), involving Cg1 which is the centroid of S1/C1–C4 ring.

Experimental

A mixture of 1-(2,5-dimethylthiophen-3-yl)ethanone (1.54 g, 0.01 mole) and dimethylformamide-dimethylacetal (1.19 g, 0.01 mole) in dry N,N-dimethylformamide (20 ml) was heated under reflux for 5 h. The reaction mixture was cooled and poured into ice water. The solid obtained was then recrystallized from ethanol to give the title compound. Single crystals suitable for X-ray structural analysis were obtained by slow evaporation from an N,N-dimethylformamide solution at room temperature.

Refinement

The major parts of disordered H atoms attached to atoms C5 and C11 [(H5A, H5B, H5C) and (H11A, H11B, H11C)] were positioned geometrically, whereas the corresponding minor parts, (H5X, H5Y, H5Z) and (H11X, H11Y, H11Z) were located in a difference Fourier map. A rotating group model was used for both major and minor parts of disorders and refined using a riding model with Uiso(H) = 1.5Ueq(C) (C—H distance = 0.96 Å). The refined site-occupancy ratios are (H5A, H5B, H5C):(H5X, H5Y, H5Z) = 0.59 (4):0.41 (4) and (H11A, H11B, H11C):(H11X, H11Y, H11Z) = 0.74 (4):0.26 (4). The remaining H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined with Uiso(H) = 1.2 or 1.5Ueq(C). Rotating group model was also applied to the other methyl groups in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A crystal packing diagram of the title compound viewed along the b axis. The dashed lines represent the hydrogen bonds. For clarity sake, H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C11H15NOS Z = 2
Mr = 209.30 F(000) = 224
Triclinic, P1 Dx = 1.207 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54178 Å
a = 5.9114 (2) Å Cell parameters from 967 reflections
b = 7.5424 (2) Å θ = 3.2–67.4°
c = 13.9940 (4) Å µ = 2.24 mm1
α = 81.274 (2)° T = 296 K
β = 88.828 (3)° Plate, pink
γ = 69.119 (3)° 0.82 × 0.15 × 0.07 mm
V = 575.83 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 1897 independent reflections
Radiation source: fine-focus sealed tube 1650 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
φ and ω scans θmax = 65.0°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→5
Tmin = 0.260, Tmax = 0.859 k = −8→8
7188 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1016P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1897 reflections Δρmax = 0.16 e Å3
134 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.02985 (11) 0.64848 (8) 0.08507 (4) 0.0778 (3)
O1 0.0467 (3) 0.8400 (2) 0.37669 (10) 0.0842 (5)
N1 0.3675 (3) 1.2353 (2) 0.39674 (11) 0.0645 (4)
C1 −0.0007 (3) 0.7081 (3) 0.19944 (13) 0.0608 (5)
C2 0.1315 (3) 0.8191 (3) 0.21208 (12) 0.0572 (4)
C3 0.2590 (4) 0.8516 (3) 0.12684 (14) 0.0665 (5)
H3A 0.3579 0.9244 0.1232 0.080*
C4 0.2241 (4) 0.7685 (3) 0.05249 (15) 0.0722 (5)
C5 0.3269 (5) 0.7734 (4) −0.04686 (17) 0.0935 (8)
H5A 0.4761 0.7964 −0.0444 0.140* 0.59 (4)
H5B 0.2134 0.8744 −0.0910 0.140* 0.59 (4)
H5C 0.3567 0.6526 −0.0686 0.140* 0.59 (4)
H5X 0.4875 0.6789 −0.0443 0.140* 0.41 (4)
H5Y 0.3329 0.8986 −0.0688 0.140* 0.41 (4)
H5Z 0.2258 0.7459 −0.0909 0.140* 0.41 (4)
C6 −0.1564 (4) 0.6318 (3) 0.26736 (16) 0.0741 (6)
H6A −0.2750 0.7362 0.2930 0.111*
H6B −0.0568 0.5417 0.3194 0.111*
H6C −0.2368 0.5689 0.2330 0.111*
C7 0.1383 (3) 0.8968 (3) 0.30347 (13) 0.0591 (5)
C8 0.2539 (3) 1.0343 (3) 0.30342 (13) 0.0594 (5)
H8A 0.3279 1.0684 0.2480 0.071*
C9 0.2569 (3) 1.1156 (3) 0.38331 (13) 0.0580 (4)
H9A 0.1705 1.0833 0.4351 0.070*
C10 0.3421 (4) 1.3206 (3) 0.48415 (16) 0.0786 (6)
H10A 0.2444 1.2712 0.5282 0.118*
H10B 0.2658 1.4575 0.4684 0.118*
H10C 0.4992 1.2896 0.5139 0.118*
C11 0.5161 (5) 1.2903 (4) 0.3226 (2) 0.0893 (7)
H11A 0.6385 1.1771 0.3058 0.134* 0.74 (4)
H11B 0.5917 1.3690 0.3467 0.134* 0.74 (4)
H11C 0.4161 1.3613 0.2663 0.134* 0.74 (4)
H11X 0.6789 1.2527 0.3480 0.134* 0.26 (4)
H11Y 0.4512 1.4270 0.3030 0.134* 0.26 (4)
H11Z 0.5163 1.2276 0.2678 0.134* 0.26 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0865 (4) 0.0846 (4) 0.0703 (4) −0.0331 (3) 0.0027 (3) −0.0296 (3)
O1 0.1196 (13) 0.1037 (12) 0.0637 (8) −0.0794 (10) 0.0170 (8) −0.0201 (7)
N1 0.0697 (10) 0.0645 (9) 0.0719 (10) −0.0393 (8) 0.0060 (7) −0.0110 (7)
C1 0.0613 (10) 0.0593 (10) 0.0623 (10) −0.0210 (8) −0.0024 (8) −0.0123 (8)
C2 0.0598 (10) 0.0558 (10) 0.0570 (10) −0.0220 (8) −0.0008 (7) −0.0079 (8)
C3 0.0681 (12) 0.0701 (12) 0.0638 (11) −0.0280 (10) 0.0062 (9) −0.0105 (9)
C4 0.0711 (12) 0.0748 (13) 0.0616 (11) −0.0145 (10) 0.0038 (9) −0.0119 (9)
C5 0.1003 (18) 0.1024 (19) 0.0662 (13) −0.0218 (14) 0.0163 (12) −0.0163 (12)
C6 0.0784 (14) 0.0821 (14) 0.0782 (13) −0.0463 (11) 0.0042 (10) −0.0184 (10)
C7 0.0625 (11) 0.0611 (11) 0.0599 (10) −0.0301 (9) 0.0011 (8) −0.0078 (8)
C8 0.0635 (11) 0.0600 (11) 0.0603 (10) −0.0294 (8) 0.0065 (8) −0.0084 (8)
C9 0.0583 (10) 0.0559 (10) 0.0653 (10) −0.0289 (8) 0.0025 (8) −0.0050 (8)
C10 0.0951 (16) 0.0787 (14) 0.0786 (13) −0.0489 (12) −0.0018 (11) −0.0164 (11)
C11 0.0905 (16) 0.0933 (16) 0.1066 (17) −0.0600 (14) 0.0237 (13) −0.0189 (13)

Geometric parameters (Å, º)

S1—C4 1.715 (2) C5—H5Z 0.9600
S1—C1 1.7161 (19) C6—H6A 0.9600
O1—C7 1.239 (2) C6—H6B 0.9600
N1—C9 1.325 (2) C6—H6C 0.9600
N1—C10 1.447 (3) C7—C8 1.431 (3)
N1—C11 1.453 (3) C8—C9 1.357 (3)
C1—C2 1.364 (3) C8—H8A 0.9300
C1—C6 1.502 (3) C9—H9A 0.9300
C2—C3 1.434 (3) C10—H10A 0.9600
C2—C7 1.492 (3) C10—H10B 0.9600
C3—C4 1.348 (3) C10—H10C 0.9600
C3—H3A 0.9300 C11—H11A 0.9600
C4—C5 1.506 (3) C11—H11B 0.9600
C5—H5A 0.9600 C11—H11C 0.9600
C5—H5B 0.9600 C11—H11X 0.9600
C5—H5C 0.9600 C11—H11Y 0.9600
C5—H5X 0.9600 C11—H11Z 0.9600
C5—H5Y 0.9600
C4—S1—C1 93.45 (9) C1—C6—H6C 109.5
C9—N1—C10 121.97 (16) H6A—C6—H6C 109.5
C9—N1—C11 121.03 (18) H6B—C6—H6C 109.5
C10—N1—C11 116.98 (17) O1—C7—C8 122.18 (17)
C2—C1—C6 131.23 (18) O1—C7—C2 119.57 (17)
C2—C1—S1 110.76 (14) C8—C7—C2 118.26 (16)
C6—C1—S1 118.00 (14) C9—C8—C7 120.80 (17)
C1—C2—C3 111.44 (17) C9—C8—H8A 119.6
C1—C2—C7 123.46 (16) C7—C8—H8A 119.6
C3—C2—C7 125.09 (17) N1—C9—C8 128.09 (17)
C4—C3—C2 114.75 (19) N1—C9—H9A 116.0
C4—C3—H3A 122.6 C8—C9—H9A 116.0
C2—C3—H3A 122.6 N1—C10—H10A 109.5
C3—C4—C5 129.0 (2) N1—C10—H10B 109.5
C3—C4—S1 109.58 (15) H10A—C10—H10B 109.5
C5—C4—S1 121.38 (19) N1—C10—H10C 109.5
C4—C5—H5A 109.5 H10A—C10—H10C 109.5
C4—C5—H5B 109.5 H10B—C10—H10C 109.5
C4—C5—H5C 109.5 N1—C11—H11A 109.5
C4—C5—H5X 109.5 N1—C11—H11B 109.5
C4—C5—H5Y 109.5 N1—C11—H11C 109.5
H5X—C5—H5Y 109.5 N1—C11—H11X 109.5
C4—C5—H5Z 109.5 N1—C11—H11Y 109.5
H5X—C5—H5Z 109.5 H11X—C11—H11Y 109.5
H5Y—C5—H5Z 109.5 N1—C11—H11Z 109.5
C1—C6—H6A 109.5 H11X—C11—H11Z 109.5
C1—C6—H6B 109.5 H11Y—C11—H11Z 109.5
H6A—C6—H6B 109.5
C4—S1—C1—C2 0.81 (15) C1—S1—C4—C5 −179.91 (19)
C4—S1—C1—C6 −178.17 (16) C1—C2—C7—O1 9.8 (3)
C6—C1—C2—C3 178.17 (19) C3—C2—C7—O1 −170.80 (19)
S1—C1—C2—C3 −0.6 (2) C1—C2—C7—C8 −170.86 (17)
C6—C1—C2—C7 −2.3 (3) C3—C2—C7—C8 8.6 (3)
S1—C1—C2—C7 178.87 (14) O1—C7—C8—C9 −3.3 (3)
C1—C2—C3—C4 0.1 (2) C2—C7—C8—C9 177.32 (17)
C7—C2—C3—C4 −179.42 (18) C10—N1—C9—C8 176.0 (2)
C2—C3—C4—C5 179.6 (2) C11—N1—C9—C8 −2.5 (3)
C2—C3—C4—S1 0.5 (2) C7—C8—C9—N1 175.62 (18)
C1—S1—C4—C3 −0.76 (17)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the S1/C1–C4 ring.

D—H···A D—H H···A D···A D—H···A
C10—H10A···O1i 0.96 2.46 3.410 (3) 172
C5—H5B···Cg1ii 0.96 2.77 3.641 (3) 152

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5136).

References

  1. Al-Said, M. S., Bashandy, M. S., Alqasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137–141. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ghorab, M. M., Nassar, O. M. & Hassan, A. Y. (1998). Phosphorus Sulfur Silicon Relat. Elem. 134, 57–76.
  5. Ghorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & Galal, M. (2006). Arzneim. Forsch. Drug. Res. 56, 553–560. [DOI] [PubMed]
  6. Gogte, V. N., Shah, L. G., Tilak, B. D., Gadekar, K. N. & Sahasrabudhe, M. B. (1967). Tetrahedron, 23, 2437–2441. [DOI] [PubMed]
  7. Hassan, A. Y., Ghorab, M. M. & Nassar, O. M. (1998). Phosphorus Sulfur Silicon Relat. Elem. 134, 77–86.
  8. Kikugawa, K. & Ichino, M. (1973). Chem. Pharm. Bull. 21, 1151–1155. [DOI] [PubMed]
  9. Krantz, A., Spencer, R. W., Tam, T. F., Liak, T. J., Copp, L. J., Thomas, E. M. & Rafferty, S. P. (1990). J. Med. Chem. 33, 464–479. [DOI] [PubMed]
  10. Medower, C., Wen, L. & Johnson, W. W. (2008). Chem. Res. Toxicol. 21, 1570–1577. [DOI] [PubMed]
  11. Shaaban, M. A., Ghorab, M. M., Heiba, H. I., Kamel, M. M., Zaher, N. H. & Mostafa, M. I. (2010). Arch. Pharm. Chem. Life Sci. 343, 404–410. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021022/is5136sup1.cif

e-68-o1712-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021022/is5136Isup2.hkl

e-68-o1712-Isup2.hkl (93.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021022/is5136Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES