Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1726. doi: 10.1107/S1600536812020855

(E)-4-Amino-N′-(2-nitro­benzyl­idene)benzohydrazide

Zhong-Feng Shi a,b, Jia-Ming Li a,*
PMCID: PMC3379316  PMID: 22719514

Abstract

The title Schiff base compound, C14H12N4O3, displays an E conformation with respect to the C=N double bond [1.268 (3) Å]. The dihedral angle between the benzene rings is 3.2 (5)°, consistent with an essentially planar mol­ecule. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds, as well as C—H⋯O inter­actions, link the mol­ecules into layers that stack along the c axis.

Related literature  

For the coordination chemistry of Schiff base and hydrazone compounds, see: Kucukguzel et al. (2006); Khattab et al. (2005); Karthikeyan et al. (2006). For a closely related 4-amino­benzohydrazide and its Schiff base structures and further background references, see: Xu (2012); Shi & Li (2012); Bakir & Green (2002).graphic file with name e-68-o1726-scheme1.jpg

Experimental  

Crystal data  

  • C14H12N4O3

  • M r = 284.28

  • Monoclinic, Inline graphic

  • a = 6.4594 (13) Å

  • b = 4.5998 (13) Å

  • c = 20.598 (5) Å

  • β = 95.08 (4)°

  • V = 609.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.25 × 0.18 × 0.10 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.976, T max = 0.989

  • 4632 measured reflections

  • 2710 independent reflections

  • 1516 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.111

  • S = 1.05

  • 2710 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020855/tk5092sup1.cif

e-68-o1726-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020855/tk5092Isup2.hkl

e-68-o1726-Isup2.hkl (78.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020855/tk5092Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N1i 0.89 2.44 3.287 (4) 162
N1—H1B⋯O1ii 0.89 2.35 3.164 (3) 153
N2—H2⋯O1iii 0.86 2.13 2.843 (3) 142
C2—H2A⋯O1ii 0.93 2.56 3.329 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Guangxi Province (grant No. 2011GXNSFB018023) and the Natural Science Foundation of the Education Bureau of Guangxi Province (grant No. 201106LX535). This work was also supported by the Program for Excellent Talents in Guangxi Higher Education Institutions and the Dean’s project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (grant No. K011).

supplementary crystallographic information

Comment

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures (Karthikeyan et al., 2006; Khattab, 2005; Kucukguzel et al., 2006). Structures of Schiff bases derived from substituted 4-aminobenzohydrazide and closely related to the title compound have been reported earlier (Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). In order to explore new anti-bacterial compounds, a new hydrazone derivative was prepared and characterized crystallographically.

As shown in Fig. 1, the asymmetric unit of the title compound, (I), contains one independent molecule displaying an E configuration with respect to its C═N double bond. The dihedral angle between the two benzene rings is 3.2 (5)°. The bond lengths and angles are as expected for a compound of this type and agree with the other ligands belonging to the hydrazone series. The C8═N3 and C7═O1 bond lengths of 1.268 (3) and 1.226 (3) Å, respectively, are the expected values for such double bonds. In the crystal packing, it is noted that amino-H (H1A, H1B) and amide-H2A atoms are involved in forming intermolecular N—H···O and N—H···N hydrogen bonds (Fig. 2 and Table 1), linking the molecules into a two-dimensional layer structure that stacks along the c axis. Weak C—H···O interactions are also noted within the layer.

Experimental

To a methanol solution (20 ml) of 2-nitrobenzaldehyde (1 mmol, 0.151 g) and 4-aminobenzohydrazide (1 mmol, 0.151 g), a few drops of acetic acid were added. The mixture was refluxed for 2 h and then cooled to room temperature to give a yellow solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of 6 days at room temperature.

Refinement

H-atoms were placed in calculated positions (C—H = 0.93 and N—H = 0.86–0.89 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C or N). In the absence of significant anomalous scattering effects, 1120 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing in the title compound where molecules are linked via N—H···O and N–H···N hydrogen bonds (dashed lines). Except for those involved in hydrogen-bonding interactions, H atoms have been omitted for clarity.

Crystal data

C14H12N4O3 F(000) = 296
Mr = 284.28 Dx = 1.549 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 7138 reflections
a = 6.4594 (13) Å θ = 1.4–27.5°
b = 4.5998 (13) Å µ = 0.11 mm1
c = 20.598 (5) Å T = 296 K
β = 95.08 (4)° Block, yellow
V = 609.6 (3) Å3 0.25 × 0.18 × 0.10 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 2710 independent reflections
Radiation source: fine-focus sealed tube 1516 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
φ and ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→7
Tmin = 0.976, Tmax = 0.989 k = −6→5
4632 measured reflections l = −26→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2479P] where P = (Fo2 + 2Fc2)/3
2710 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6908 (3) 1.3470 (4) 0.16727 (9) 0.0252 (4)
O2 0.5696 (3) 0.5737 (5) 0.40854 (9) 0.0335 (5)
O3 0.3389 (3) 0.4666 (5) 0.47354 (9) 0.0338 (5)
N1 1.4552 (3) 0.7167 (6) 0.05402 (10) 0.0248 (5)
H1A 1.5039 0.8252 0.0236 0.030*
H1B 1.5583 0.6443 0.0811 0.030*
N2 0.6727 (3) 0.9187 (5) 0.21889 (9) 0.0193 (4)
H2 0.7097 0.7415 0.2215 0.023*
N3 0.5305 (3) 1.0250 (5) 0.25824 (9) 0.0198 (4)
N4 0.3968 (3) 0.6017 (5) 0.42806 (10) 0.0241 (5)
C1 1.2814 (3) 0.8062 (6) 0.08357 (11) 0.0196 (5)
C2 1.2309 (3) 0.6722 (6) 0.14030 (11) 0.0194 (5)
H2A 1.3134 0.5234 0.1585 0.023*
C3 1.0579 (3) 0.7606 (6) 0.16970 (11) 0.0190 (5)
H3 1.0271 0.6715 0.2078 0.023*
C4 0.9293 (3) 0.9809 (6) 0.14297 (11) 0.0188 (5)
C5 0.9786 (3) 1.1101 (6) 0.08586 (11) 0.0200 (5)
H5 0.8938 1.2555 0.0671 0.024*
C6 1.1522 (3) 1.0262 (6) 0.05623 (11) 0.0213 (5)
H6 1.1827 1.1162 0.0182 0.026*
C7 0.7535 (3) 1.0973 (6) 0.17592 (11) 0.0189 (5)
C8 0.4572 (3) 0.8400 (6) 0.29566 (11) 0.0196 (5)
H8 0.5066 0.6525 0.2978 0.024*
C9 0.2917 (3) 0.9327 (6) 0.33548 (11) 0.0188 (5)
C10 0.2529 (3) 0.8118 (6) 0.39485 (11) 0.0194 (5)
C11 0.0792 (4) 0.8859 (6) 0.42611 (11) 0.0230 (6)
H11 0.0555 0.7975 0.4650 0.028*
C12 −0.0568 (4) 1.0909 (7) 0.39888 (12) 0.0264 (6)
H12 −0.1735 1.1405 0.4191 0.032*
C13 −0.0189 (4) 1.2225 (6) 0.34132 (12) 0.0245 (5)
H13 −0.1085 1.3647 0.3236 0.029*
C14 0.1523 (3) 1.1439 (6) 0.30967 (12) 0.0218 (5)
H14 0.1746 1.2331 0.2707 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0270 (9) 0.0148 (9) 0.0353 (10) 0.0046 (7) 0.0107 (7) 0.0022 (8)
O2 0.0270 (8) 0.0396 (13) 0.0347 (10) 0.0120 (9) 0.0078 (7) 0.0073 (10)
O3 0.0390 (10) 0.0295 (12) 0.0336 (10) 0.0006 (9) 0.0069 (8) 0.0107 (10)
N1 0.0206 (9) 0.0285 (13) 0.0269 (10) 0.0033 (10) 0.0103 (7) −0.0009 (11)
N2 0.0187 (9) 0.0158 (10) 0.0247 (9) 0.0043 (8) 0.0083 (7) 0.0010 (9)
N3 0.0182 (8) 0.0198 (11) 0.0223 (9) 0.0026 (8) 0.0061 (7) −0.0025 (9)
N4 0.0269 (10) 0.0202 (11) 0.0256 (10) 0.0020 (9) 0.0052 (8) −0.0012 (10)
C1 0.0170 (10) 0.0202 (13) 0.0222 (10) −0.0017 (10) 0.0047 (8) −0.0073 (11)
C2 0.0182 (10) 0.0164 (13) 0.0236 (11) 0.0029 (9) 0.0021 (8) −0.0020 (10)
C3 0.0193 (10) 0.0154 (13) 0.0232 (11) −0.0012 (9) 0.0060 (8) −0.0008 (10)
C4 0.0164 (9) 0.0189 (13) 0.0215 (10) 0.0004 (10) 0.0034 (7) −0.0039 (10)
C5 0.0204 (10) 0.0170 (12) 0.0227 (11) 0.0012 (10) 0.0024 (8) 0.0011 (11)
C6 0.0232 (11) 0.0208 (13) 0.0208 (10) −0.0012 (10) 0.0068 (8) −0.0008 (10)
C7 0.0181 (10) 0.0171 (12) 0.0222 (11) −0.0012 (10) 0.0044 (8) −0.0026 (11)
C8 0.0188 (9) 0.0181 (12) 0.0223 (10) 0.0010 (10) 0.0038 (8) −0.0014 (11)
C9 0.0157 (9) 0.0153 (12) 0.0258 (11) −0.0009 (9) 0.0045 (8) −0.0028 (10)
C10 0.0188 (10) 0.0153 (12) 0.0243 (11) 0.0014 (10) 0.0028 (8) −0.0007 (11)
C11 0.0251 (11) 0.0230 (15) 0.0223 (11) −0.0018 (11) 0.0094 (8) −0.0004 (11)
C12 0.0203 (10) 0.0318 (16) 0.0283 (12) 0.0023 (11) 0.0084 (9) −0.0031 (13)
C13 0.0223 (10) 0.0216 (14) 0.0293 (12) 0.0035 (11) 0.0020 (9) −0.0028 (12)
C14 0.0215 (10) 0.0187 (14) 0.0254 (11) 0.0013 (10) 0.0035 (8) 0.0010 (11)

Geometric parameters (Å, º)

O1—C7 1.226 (3) C4—C5 1.380 (3)
O2—N4 1.226 (3) C4—C7 1.474 (3)
O3—N4 1.211 (3) C5—C6 1.378 (3)
N1—C1 1.386 (3) C5—H5 0.9300
N1—H1A 0.8900 C6—H6 0.9300
N1—H1B 0.8900 C8—C9 1.467 (3)
N2—C7 1.346 (3) C8—H8 0.9300
N2—N3 1.368 (3) C9—C10 1.386 (3)
N2—H2 0.8600 C9—C14 1.397 (3)
N3—C8 1.268 (3) C10—C11 1.385 (3)
N4—C10 1.470 (3) C11—C12 1.378 (4)
C1—C2 1.385 (3) C11—H11 0.9300
C1—C6 1.398 (3) C12—C13 1.372 (4)
C2—C3 1.379 (3) C12—H12 0.9300
C2—H2A 0.9300 C13—C14 1.381 (3)
C3—C4 1.393 (3) C13—H13 0.9300
C3—H3 0.9300 C14—H14 0.9300
C1—N1—H1A 120.0 C5—C6—H6 119.9
C1—N1—H1B 115.0 C1—C6—H6 119.9
H1A—N1—H1B 111.2 O1—C7—N2 121.8 (2)
C7—N2—N3 119.3 (2) O1—C7—C4 122.1 (2)
C7—N2—H2 120.4 N2—C7—C4 116.1 (2)
N3—N2—H2 120.4 N3—C8—C9 118.3 (2)
C8—N3—N2 115.1 (2) N3—C8—H8 120.9
O3—N4—O2 123.5 (2) C9—C8—H8 120.9
O3—N4—C10 118.12 (19) C10—C9—C14 117.0 (2)
O2—N4—C10 118.3 (2) C10—C9—C8 125.2 (2)
C2—C1—N1 119.9 (2) C14—C9—C8 117.8 (2)
C2—C1—C6 118.8 (2) C9—C10—C11 121.9 (2)
N1—C1—C6 121.0 (2) C9—C10—N4 121.26 (19)
C3—C2—C1 120.0 (2) C11—C10—N4 116.7 (2)
C3—C2—H2A 119.9 C12—C11—C10 119.5 (2)
C1—C2—H2A 119.9 C12—C11—H11 120.2
C2—C3—C4 121.2 (2) C10—C11—H11 120.2
C2—C3—H3 119.4 C11—C12—C13 119.7 (2)
C4—C3—H3 119.4 C11—C12—H12 120.2
C5—C4—C3 118.2 (2) C13—C12—H12 120.2
C5—C4—C7 119.0 (2) C12—C13—C14 120.6 (2)
C3—C4—C7 122.6 (2) C12—C13—H13 119.7
C6—C5—C4 121.0 (2) C14—C13—H13 119.7
C6—C5—H5 119.4 C13—C14—C9 121.2 (2)
C4—C5—H5 119.4 C13—C14—H14 119.4
C5—C6—C1 120.2 (2) C9—C14—H14 119.4
C7—N2—N3—C8 177.7 (2) N3—C8—C9—C10 −152.8 (2)
N1—C1—C2—C3 −179.9 (2) N3—C8—C9—C14 32.2 (3)
C6—C1—C2—C3 −1.3 (4) C14—C9—C10—C11 2.8 (4)
C1—C2—C3—C4 0.9 (4) C8—C9—C10—C11 −172.1 (2)
C2—C3—C4—C5 0.1 (4) C14—C9—C10—N4 −176.2 (2)
C2—C3—C4—C7 −174.8 (2) C8—C9—C10—N4 8.9 (4)
C3—C4—C5—C6 −0.8 (4) O3—N4—C10—C9 −167.6 (2)
C7—C4—C5—C6 174.3 (2) O2—N4—C10—C9 12.8 (4)
C4—C5—C6—C1 0.3 (4) O3—N4—C10—C11 13.3 (3)
C2—C1—C6—C5 0.7 (4) O2—N4—C10—C11 −166.2 (2)
N1—C1—C6—C5 179.2 (2) C9—C10—C11—C12 −1.9 (4)
N3—N2—C7—O1 −6.0 (3) N4—C10—C11—C12 177.2 (2)
N3—N2—C7—C4 170.59 (19) C10—C11—C12—C13 −0.5 (4)
C5—C4—C7—O1 −22.4 (4) C11—C12—C13—C14 1.8 (4)
C3—C4—C7—O1 152.4 (2) C12—C13—C14—C9 −0.7 (4)
C5—C4—C7—N2 161.0 (2) C10—C9—C14—C13 −1.6 (4)
C3—C4—C7—N2 −24.1 (3) C8—C9—C14—C13 173.8 (2)
N2—N3—C8—C9 −175.25 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N1i 0.89 2.44 3.287 (4) 162
N1—H1B···O1ii 0.89 2.35 3.164 (3) 153
N2—H2···O1iii 0.86 2.13 2.843 (3) 142
C2—H2A···O1ii 0.93 2.56 3.329 (3) 140

Symmetry codes: (i) −x+3, y+1/2, −z; (ii) x+1, y−1, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5092).

References

  1. Bakir, M. & Green, O. (2002). Acta Cryst. C58, o263–o265. [DOI] [PubMed]
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. [DOI] [PubMed]
  4. Khattab, S. N. (2005). Molecules, 10, 1218–1228. [DOI] [PMC free article] [PubMed]
  5. Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shi, Z.-F. & Li, J.-M. (2012). Acta Cryst. E68, o1546–o1547. [DOI] [PMC free article] [PubMed]
  9. Xu, S.-Q. (2012). Acta Cryst. E68, o1320. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020855/tk5092sup1.cif

e-68-o1726-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020855/tk5092Isup2.hkl

e-68-o1726-Isup2.hkl (78.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020855/tk5092Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES