Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1728. doi: 10.1107/S1600536812020673

(S)-N-Phenyl-tert-butane­sulfinamide

Xiaofei Sun a, Xiaoping Zhang a, Binbin Zhang a, Wenguo Wang b, Qingle Zeng a,*
PMCID: PMC3379318  PMID: 22719516

Abstract

The asymmetric unit of the title compound, C10H15NOS, contains two independent mol­ecules with similar conformations. In the crystal, mol­ecules are linked in a head-to-tail fashion by N—H⋯O hydrogen bonds into chains running along the b axis. The absolute configuration was assigned on the basis of known chirality of the parent compound.

Related literature  

For the structures of related N-alkyl and N-aryl alkanesulf­in­amides, see: Datta et al. (2008, 2009a ,b , 2010); Sun et al. (2012a ,b ) Zhang et al. (2012); Sato et al. (1975); Schuckmann et al. (1978); Ferreira et al. (2005).graphic file with name e-68-o1728-scheme1.jpg

Experimental  

Crystal data  

  • C10H15NOS

  • M r = 197.29

  • Orthorhombic, Inline graphic

  • a = 9.3596 (4) Å

  • b = 10.4702 (4) Å

  • c = 22.7438 (10) Å

  • V = 2228.82 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.38 × 0.32 × 0.30 mm

Data collection  

  • Aglenet Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.987, T max = 1.000

  • 6065 measured reflections

  • 3993 independent reflections

  • 2503 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.090

  • S = 0.98

  • 3993 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983), 1390 Friedel pairs

  • Flack parameter: −0.09 (9)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020673/rz2751sup1.cif

e-68-o1728-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020673/rz2751Isup2.hkl

e-68-o1728-Isup2.hkl (195.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020673/rz2751Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.80 (3) 2.17 (3) 2.937 (4) 161 (3)
N2—H2⋯O1ii 0.83 (2) 2.11 (2) 2.914 (4) 166 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Ministry of Human Resources and Social Security of China, the Science and Technology Bureau of Sichuan (grant No. 2011HH0016), the Open Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection and the Cultivating Programme for Excellent Innovation Teams of Chengdu University of Technology (No. HY0084) for financial support.

supplementary crystallographic information

Comment

In recent years, sulfonamide moieties have played an increasingly important role in organic chemistry, particularly due to their use as chiral auxiliaries or precursors for the synthesis of a broad family of pharmaceutical agents. As a contribution to this research field, the X-ray crystallographic study of the title compound (Fig. 1) is reported herein. A number of related (R)—N-(3-methoxyphenyl) tert-butanesulfinamides, (R)—N-(4-biphenyl) tert-butanesulfinamide, N-aryl alkanesulfinamides and N-alkyl alkanesulfinamides have been reported recently (Datta et al., 2008, 2009a, 2009b, 2010; Sun et al., 2012a, 2012b Zhang et al., 2012; Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005).

In the title compound, the value of the N-C(aryl) bond (N1—C1 = 1.403 (4) Å; N2—C11 = 1.403 (4) Å) is considerably shorter than those typically found in N-alkylsulfinamides (1.470–1.530 Å; Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005), suggesting a significant delocalization of electrons over the nitrogen atom and the benzene ring. In the crystal structure, the molecules are linked into chains parallel to the b axis by intermolecular N—H···O hydrogen bonds (Fig. 2; Table 1).

Experimental

A oven-dried ground test tube, which was equipped with a magnetic stir bar and fitted with a rubber septum, was charged with (S)-tert-butanesulfinamide (0.121 g, 1.0 mmol), Pd2(dba)3 (0.018 g, 0.02 mmol), tBu-XPhos (0.0212 g, 0.05 mmol) and NaOH (0.08 g, 2 mmol). The vessel was evacuated and backfilled with argon (this process was repeated a total of 3 times) and then phenyl bromide (1.3 mmol), toluene (10 ml) and degassed water (0.3 ml) were added via syringe. The solution was stirred at 90° for 20 h. The reaction mixture was then cooled to room temperature, quenched by water, and extracted with ethyl acetate (2 × 20 ml). The organic layer was combined, dried over anhydrous sodium sulfate and filtrated. The filterate was condensed under vacuum. The residual was purified with silica gel column chromatography with a solution of petroleum ether/ethyl acetate (5:1 v/v) as an eluent to give a white solid (0.167 g, yield 86%). A test tube containing the eluate (petroleum ether/ethyl acetate (5:1 v/v) was covered with a piece of filter paper and placed motionless at room temperature (about 20°), until a single-crystal was cultured in the bottom of the test tube. M.p.: 383–386 K. [α]D21 = +179 (c 3/4, ethyl acetate). Spectroscopic analysis: 1H NMR (300 MHz, CDCl3), δ (p.p.m.): 7.25–7.24 (m, 2H), 7.01 (t, J = 6.3 Hz, 3H), 5.41 (d, J = 11.1 Hz, 1H), 1.33 (s, 9H). 13C NMR (75 MHz, CDCl3), δ (p.p.m.): 142.1, 129.1, 122.4, 117.9, 56.3, 22.3. IR (KBr), ν (cm-1): 3452, 3145, 2961, 2889, 1598, 1495, 1412, 1363, 1287, 1236, 1053, 887, 751. ESI-MS (negative mode), m/z = 196 [M—H]-.

Refinement

The N-bound H atoms were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms. The absolute configuration was assigned on the basis of known chirality of the parent (S)-tert-butanesulfinamide compound.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The one-dimensional structure of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C10H15NOS Dx = 1.176 Mg m3
Mr = 197.29 Melting point = 383–386 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.7107 Å
a = 9.3596 (4) Å Cell parameters from 1915 reflections
b = 10.4702 (4) Å θ = 3.1–29.1°
c = 22.7438 (10) Å µ = 0.25 mm1
V = 2228.82 (17) Å3 T = 293 K
Z = 8 Block, colourless
F(000) = 848 0.38 × 0.32 × 0.30 mm

Data collection

Aglenet Xcalibur Eos diffractometer 3993 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2503 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 16.0874 pixels mm-1 θmax = 26.4°, θmin = 3.1°
ω scans h = −11→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −13→10
Tmin = 0.987, Tmax = 1.000 l = −16→28
6065 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0271P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max = 0.001
3993 reflections Δρmax = 0.26 e Å3
249 parameters Δρmin = −0.26 e Å3
0 restraints Absolute structure: Flack (1983), 1390 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.09 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.63522 (11) −0.88887 (8) −0.08184 (4) 0.0658 (3)
S2 0.04812 (9) −1.49605 (8) 0.25283 (4) 0.0596 (2)
O1 −0.6196 (3) −0.7833 (2) −0.12453 (11) 0.0943 (9)
O2 0.0446 (3) −1.3883 (2) 0.20975 (9) 0.0730 (7)
N1 −0.5152 (4) −0.9991 (3) −0.09407 (14) 0.0781 (10)
H1 −0.517 (3) −1.037 (2) −0.1245 (12) 0.051 (11)*
N2 0.0029 (4) −1.4435 (3) 0.31882 (13) 0.0702 (10)
H2 0.042 (3) −1.376 (2) 0.3290 (11) 0.038 (9)*
C1 −0.3963 (4) −1.0169 (3) −0.05740 (14) 0.0567 (9)
C2 −0.3226 (4) −1.1295 (3) −0.06151 (15) 0.0697 (11)
H2A −0.3507 −1.1910 −0.0887 0.084*
C3 −0.2065 (5) −1.1521 (4) −0.02543 (17) 0.0783 (12)
H3 −0.1560 −1.2283 −0.0289 0.094*
C4 −0.1653 (5) −1.0632 (5) 0.01535 (16) 0.0814 (13)
H4 −0.0881 −1.0792 0.0400 0.098*
C5 −0.2383 (5) −0.9517 (4) 0.01931 (17) 0.0805 (12)
H5 −0.2106 −0.8912 0.0470 0.097*
C6 −0.3530 (5) −0.9262 (3) −0.01707 (15) 0.0683 (11)
H6 −0.4007 −0.8485 −0.0144 0.082*
C7 −0.7985 (4) −0.9729 (3) −0.10372 (14) 0.0651 (10)
C8 −0.7966 (4) −0.9995 (4) −0.17018 (14) 0.0892 (12)
H8A −0.7820 −0.9209 −0.1911 0.134*
H8B −0.8861 −1.0365 −0.1818 0.134*
H8C −0.7204 −1.0577 −0.1792 0.134*
C9 −0.9184 (4) −0.8808 (3) −0.08820 (16) 0.0868 (12)
H9A −0.9160 −0.8631 −0.0468 0.130*
H9B −1.0086 −0.9185 −0.0982 0.130*
H9C −0.9061 −0.8027 −0.1097 0.130*
C10 −0.8088 (4) −1.0947 (3) −0.06758 (17) 0.1018 (15)
H10A −0.7340 −1.1523 −0.0790 0.153*
H10B −0.8999 −1.1343 −0.0743 0.153*
H10C −0.7991 −1.0744 −0.0266 0.153*
C11 −0.1317 (4) −1.4709 (3) 0.34283 (13) 0.0549 (9)
C12 −0.2013 (4) −1.5837 (3) 0.33049 (14) 0.0687 (11)
H12 −0.1604 −1.6432 0.3052 0.082*
C13 −0.3322 (4) −1.6075 (4) 0.35607 (17) 0.0791 (11)
H13 −0.3804 −1.6823 0.3466 0.095*
C14 −0.3932 (4) −1.5244 (5) 0.39494 (17) 0.0868 (13)
H14 −0.4807 −1.5427 0.4123 0.104*
C15 −0.3220 (4) −1.4137 (4) 0.40762 (16) 0.0815 (13)
H15 −0.3619 −1.3566 0.4343 0.098*
C16 −0.1937 (4) −1.3846 (3) 0.38212 (14) 0.0705 (10)
H16 −0.1481 −1.3080 0.3909 0.085*
C17 0.2373 (4) −1.5304 (3) 0.26576 (14) 0.0632 (10)
C18 0.2876 (5) −1.5848 (4) 0.20743 (18) 0.1162 (16)
H18A 0.2232 −1.6508 0.1950 0.174*
H18B 0.3817 −1.6199 0.2120 0.174*
H18C 0.2898 −1.5182 0.1785 0.174*
C19 0.3190 (4) −1.4111 (3) 0.28162 (15) 0.0825 (12)
H19A 0.3082 −1.3490 0.2509 0.124*
H19B 0.4184 −1.4314 0.2863 0.124*
H19C 0.2825 −1.3768 0.3178 0.124*
C20 0.2443 (5) −1.6306 (4) 0.31436 (17) 0.1057 (15)
H20A 0.2186 −1.5922 0.3512 0.159*
H20B 0.3397 −1.6639 0.3169 0.159*
H20C 0.1791 −1.6988 0.3056 0.159*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0774 (6) 0.0593 (5) 0.0608 (5) 0.0046 (6) 0.0068 (6) −0.0011 (5)
S2 0.0663 (5) 0.0637 (5) 0.0488 (4) −0.0082 (6) 0.0024 (5) −0.0111 (5)
O1 0.102 (2) 0.0703 (15) 0.1102 (19) −0.0104 (17) 0.011 (2) 0.0274 (15)
O2 0.0870 (17) 0.0736 (15) 0.0582 (14) 0.0001 (18) −0.0085 (15) 0.0076 (12)
N1 0.087 (2) 0.092 (2) 0.0550 (19) 0.022 (2) −0.005 (2) −0.027 (2)
N2 0.078 (2) 0.071 (2) 0.0618 (19) −0.024 (2) 0.0131 (19) −0.0221 (17)
C1 0.067 (2) 0.060 (2) 0.0430 (18) 0.001 (2) 0.0080 (18) −0.0012 (18)
C2 0.078 (3) 0.067 (3) 0.063 (2) 0.000 (3) 0.003 (2) −0.0006 (19)
C3 0.082 (3) 0.075 (3) 0.078 (3) 0.017 (3) 0.013 (3) 0.010 (2)
C4 0.077 (3) 0.106 (3) 0.061 (3) 0.002 (3) −0.003 (3) 0.012 (3)
C5 0.094 (3) 0.088 (3) 0.059 (3) −0.011 (3) 0.002 (3) −0.004 (2)
C6 0.087 (3) 0.066 (2) 0.052 (2) −0.002 (3) 0.007 (2) 0.0038 (19)
C7 0.072 (3) 0.054 (2) 0.069 (2) 0.004 (2) 0.009 (2) 0.0059 (18)
C8 0.087 (3) 0.102 (3) 0.078 (3) 0.004 (3) −0.009 (3) −0.017 (2)
C9 0.076 (3) 0.083 (3) 0.101 (3) 0.011 (3) 0.014 (3) −0.004 (2)
C10 0.116 (4) 0.073 (3) 0.117 (3) −0.010 (3) 0.024 (3) 0.021 (2)
C11 0.062 (2) 0.057 (2) 0.0462 (19) −0.001 (2) 0.000 (2) 0.0024 (17)
C12 0.068 (3) 0.073 (3) 0.065 (2) 0.001 (2) 0.012 (2) −0.0014 (19)
C13 0.071 (3) 0.082 (3) 0.084 (3) −0.009 (3) 0.007 (3) 0.004 (2)
C14 0.065 (3) 0.117 (3) 0.079 (3) 0.010 (3) 0.014 (2) 0.017 (3)
C15 0.081 (3) 0.097 (3) 0.066 (3) 0.027 (3) 0.017 (3) −0.004 (2)
C16 0.086 (3) 0.070 (2) 0.055 (2) 0.012 (3) 0.008 (2) −0.004 (2)
C17 0.068 (2) 0.063 (2) 0.058 (2) 0.002 (2) 0.001 (2) −0.0055 (18)
C18 0.091 (3) 0.150 (4) 0.107 (3) 0.016 (3) 0.013 (3) −0.052 (3)
C19 0.071 (3) 0.078 (3) 0.098 (3) −0.009 (2) −0.004 (2) −0.002 (2)
C20 0.105 (3) 0.084 (3) 0.128 (4) 0.000 (3) −0.019 (3) 0.025 (3)

Geometric parameters (Å, º)

S1—O1 1.479 (2) C9—H9B 0.9600
S1—N1 1.634 (3) C9—H9C 0.9600
S1—C7 1.832 (4) C10—H10A 0.9600
S2—O2 1.494 (2) C10—H10B 0.9600
S2—N2 1.654 (3) C10—H10C 0.9600
S2—C17 1.831 (4) C11—C12 1.378 (4)
N1—H1 0.80 (3) C11—C16 1.397 (4)
N1—C1 1.403 (4) C12—H12 0.9300
N2—H2 0.83 (2) C12—C13 1.379 (5)
N2—C11 1.403 (4) C13—H13 0.9300
C1—C2 1.370 (4) C13—C14 1.365 (5)
C1—C6 1.381 (4) C14—H14 0.9300
C2—H2A 0.9300 C14—C15 1.368 (5)
C2—C3 1.382 (5) C15—H15 0.9300
C3—H3 0.9300 C15—C16 1.368 (5)
C3—C4 1.370 (5) C16—H16 0.9300
C4—H4 0.9300 C17—C18 1.519 (4)
C4—C5 1.356 (5) C17—C19 1.509 (4)
C5—H5 0.9300 C17—C20 1.526 (4)
C5—C6 1.381 (5) C18—H18A 0.9600
C6—H6 0.9300 C18—H18B 0.9600
C7—C8 1.537 (4) C18—H18C 0.9600
C7—C9 1.521 (4) C19—H19A 0.9600
C7—C10 1.520 (4) C19—H19B 0.9600
C8—H8A 0.9600 C19—H19C 0.9600
C8—H8B 0.9600 C20—H20A 0.9600
C8—H8C 0.9600 C20—H20B 0.9600
C9—H9A 0.9600 C20—H20C 0.9600
O1—S1—N1 110.38 (17) C7—C10—H10A 109.5
O1—S1—C7 105.27 (16) C7—C10—H10B 109.5
N1—S1—C7 100.83 (16) C7—C10—H10C 109.5
O2—S2—N2 109.77 (14) H10A—C10—H10B 109.5
O2—S2—C17 105.97 (15) H10A—C10—H10C 109.5
N2—S2—C17 99.62 (16) H10B—C10—H10C 109.5
S1—N1—H1 119 (2) C12—C11—N2 121.4 (3)
C1—N1—S1 122.5 (3) C12—C11—C16 119.3 (4)
C1—N1—H1 118 (2) C16—C11—N2 119.3 (3)
S2—N2—H2 115.2 (19) C11—C12—H12 120.4
C11—N2—S2 121.0 (3) C11—C12—C13 119.2 (4)
C11—N2—H2 117.5 (19) C13—C12—H12 120.4
C2—C1—N1 118.3 (3) C12—C13—H13 119.0
C2—C1—C6 119.3 (3) C14—C13—C12 122.0 (4)
C6—C1—N1 122.5 (4) C14—C13—H13 119.0
C1—C2—H2A 119.9 C13—C14—H14 120.9
C1—C2—C3 120.2 (4) C13—C14—C15 118.2 (4)
C3—C2—H2A 119.9 C15—C14—H14 120.9
C2—C3—H3 119.8 C14—C15—H15 119.1
C4—C3—C2 120.5 (4) C14—C15—C16 121.8 (4)
C4—C3—H3 119.8 C16—C15—H15 119.1
C3—C4—H4 120.4 C11—C16—H16 120.3
C5—C4—C3 119.2 (4) C15—C16—C11 119.4 (4)
C5—C4—H4 120.4 C15—C16—H16 120.3
C4—C5—H5 119.4 C18—C17—S2 103.5 (2)
C4—C5—C6 121.2 (4) C18—C17—C20 111.2 (3)
C6—C5—H5 119.4 C19—C17—S2 111.5 (2)
C1—C6—C5 119.6 (4) C19—C17—C18 111.3 (3)
C1—C6—H6 120.2 C19—C17—C20 112.0 (3)
C5—C6—H6 120.2 C20—C17—S2 107.0 (3)
C8—C7—S1 110.1 (3) C17—C18—H18A 109.5
C9—C7—S1 104.3 (2) C17—C18—H18B 109.5
C9—C7—C8 110.6 (3) C17—C18—H18C 109.5
C10—C7—S1 108.0 (3) H18A—C18—H18B 109.5
C10—C7—C8 112.4 (3) H18A—C18—H18C 109.5
C10—C7—C9 111.1 (3) H18B—C18—H18C 109.5
C7—C8—H8A 109.5 C17—C19—H19A 109.5
C7—C8—H8B 109.5 C17—C19—H19B 109.5
C7—C8—H8C 109.5 C17—C19—H19C 109.5
H8A—C8—H8B 109.5 H19A—C19—H19B 109.5
H8A—C8—H8C 109.5 H19A—C19—H19C 109.5
H8B—C8—H8C 109.5 H19B—C19—H19C 109.5
C7—C9—H9A 109.5 C17—C20—H20A 109.5
C7—C9—H9B 109.5 C17—C20—H20B 109.5
C7—C9—H9C 109.5 C17—C20—H20C 109.5
H9A—C9—H9B 109.5 H20A—C20—H20B 109.5
H9A—C9—H9C 109.5 H20A—C20—H20C 109.5
H9B—C9—H9C 109.5 H20B—C20—H20C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.80 (3) 2.17 (3) 2.937 (4) 161 (3)
N2—H2···O1ii 0.83 (2) 2.11 (2) 2.914 (4) 166 (3)

Symmetry codes: (i) x−1/2, −y−5/2, −z; (ii) −x−1/2, −y−2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2751).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies UK Ltd, Yarnton, England.
  2. Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009a). Acta Cryst. E65, o2823. [DOI] [PMC free article] [PubMed]
  3. Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009b). Acta Cryst. E65, o2034. [DOI] [PMC free article] [PubMed]
  4. Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2010). Acta Cryst. E66, o109. [DOI] [PMC free article] [PubMed]
  5. Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393. [DOI] [PMC free article] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269–5278. [DOI] [PubMed]
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.
  10. Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sun, X., Dai, C., Tu, X., Wang, W. & Zeng, Q. (2012a). Acta Cryst. E68, o773. [DOI] [PMC free article] [PubMed]
  13. Sun, X. F., Tu, X. Z., Dai, C., Zhang, X. P., Zhang, B. B. & Zeng, Q. L. (2012b). J. Org. Chem. 77, 4454–4459. [DOI] [PubMed]
  14. Zhang, B., Wang, Y., Sun, X., Wang, W. & Zeng, Q. (2012). Acta Cryst. E68, o1389. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020673/rz2751sup1.cif

e-68-o1728-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020673/rz2751Isup2.hkl

e-68-o1728-Isup2.hkl (195.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020673/rz2751Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES