Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1738–o1739. doi: 10.1107/S160053681201954X

1-(5-Bromo-4-phenyl-1,3-thia­zol-2-yl)pyrrolidin-2-one

Hazem A Ghabbour a, Adnan A Kadi a, Hussein I El-Subbagh b, Tze Shyang Chia c, Hoong-Kun Fun c,*,
PMCID: PMC3379326  PMID: 22719524

Abstract

The asymmetric unit of the title compound, C13H11BrN2OS, consists of two crystallographically independent mol­ecules (A and B). In each mol­ecule, the pyrrolidine ring adopts an envelope conformation with a methyl­ene C atom as the flap atom. In mol­ecule A, the central thia­zole ring makes a dihedral angle of 36.69 (11)° with the adjacent phenyl ring, whereas the corresponding angle is 36.85 (12)° in mol­ecule B. The pyrrolidine ring is slightly twisted from the thia­zole ring, with C—N—C—N torsion angles of 4.8 (3) and 3.0 (4)° in mol­ecules A and B, respectively. In the crystal, C—H⋯π and π–π [centroid-to-centroid distance = 3.7539 (14) Å] inter­actions are observed. The crystal studied was a pseudo-merohedral twin with twin law (-100 0-10 101) and a refined component ratio of 0.7188 (5):0.2812 (5).

Related literature  

For background to thiazoles, see: Bishayee et al. (1997); Chitamber & Wereley (1997); Bhaskar et al. (2008); Sharma et al. (2009); Bhattacharya et al. (2005); Spector et al. (1998). For ring-puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1738-scheme1.jpg

Experimental  

Crystal data  

  • C13H11BrN2OS

  • M r = 323.21

  • Monoclinic, Inline graphic

  • a = 7.5243 (3) Å

  • b = 14.1861 (6) Å

  • c = 12.4488 (6) Å

  • β = 107.508 (1)°

  • V = 1267.23 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.40 mm−1

  • T = 100 K

  • 0.26 × 0.14 × 0.14 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.466, T max = 0.646

  • 30838 measured reflections

  • 9338 independent reflections

  • 8701 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.051

  • S = 0.99

  • 9338 reflections

  • 326 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983), with 4219 Friedel pairs

  • Flack parameter: 0.017 (4)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201954X/is5131sup1.cif

e-68-o1738-sup1.cif (33.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201954X/is5131Isup2.hkl

e-68-o1738-Isup2.hkl (456.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201954X/is5131Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1B–C6B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12BCg1i 0.97 2.89 3.767 (3) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

HAG and AAK thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship.

supplementary crystallographic information

Comment

Thiazole is a five-membered ring system with two hetero atoms (S, N) placed at the 1 and 3 positions of the heterocycle. The nucleus is a building block in the structure of various natural products and biologically active compounds, like thiamine (vitamin-B), also in some antibiotics drugs like penicillin, micrococcin and many metabolic products of fungi and primitive marine animals (Bhaskar et al., 2008). Thiazole-containing drugs have widespread use in a variety of medical conditions such as fungal and bacterial infections, gastric ulcers, cancer, etc (Bishayee et al., 1997). Thiazole derivatives are involved frequently as the subject of drug design and synthesis efforts and they are reported to possess several activities like antibacterial, antifungal, anti-inflammatory (Sharma et al., 2009), analgesic, antitubercular, central nervous system (CNS) stimmulant activity as well as anti-HIV activity (Bhattacharya et al., 2005). Aminothiazole derivatives are well explored as agents of potential biological activities and some of the derivatives of thiazoles have shown inhibition towards herpes simplex virus (Spector et al., 1998).

The asymmetric unit of the title compound (Fig. 1) consists of two crystallographically independent molecules (A and B). In both molecules, the pyrrolidine ring (N2/C10–C13) adopts an envelope conformation with atom C11 as the flap atom [puckering parameters (Cremer & Pople, 1975), Q = 0.272 (3) Å and φ = 254.4 (5)° in molecule A; Q = 0.282 (3) Å and φ = 74.7 (5)° in molecule B]. In molecule A, the central thiazole ring (S1/N1/C7–C9) makes a dihedral angle of 36.69 (11)° with the adjacent benzene ring (C1–C6), whereas the corresponding angle is 36.85 (12)° in molecule B. The pyrrolidine ring is slightly twisted from the thiazole ring with C10—N2—C9—N1 torsion angles of 4.8 (3) and 3.0 (4)° in molecules A and B, respectively.

In the crystal packing, no significant intermoelcular hydrogen bondings are observed. The crystal packing is stabilized by C—H···Cg1 and π—π [Cg2—Cg3 = 3.7539 (14) Å; symmetry code = 1-X,1/2+Y,1-Z] interactions, where Cg1, Cg2 and Cg3 are the centroids of C1B–C6B, S1A/N1A/C7A–C9A and S1B/N1B/C7B–C9B rings, respectively.

Experimental

4-Chlorobutanoyl chloride (423 mg, 3 mmol) was added dropwise to a solution of 5-bromo-4-phenylthiazol-2-amine (255 mg, 1 mmol) and K2CO3 (414 mg, 3 mmol) in CHCl3. The mixture was stirred for 48 h at room temperature and then ammonia and water were added to remove excess 4-chlorobutanoyl chloride and K2CO3. The organic solvent was removed in vacuum. The residue was taken up in dry toluene and the solution was refluxed for 10 h after addition of excess amount of piperidine. The mixture was cooled and the solvent was removed in vacuum to give solid which was then purified by chromatotron and crystallized from ethanol to give the single crystals.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). Three outliers (-1 5 2), (0 2 0) and (-3 0 1) were omitted. The crystal was a twin with twin law (100 010 101) and BASF = 0.2812 (5).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom labels and 50% probability displacement ellipsoids.

Crystal data

C13H11BrN2OS F(000) = 648
Mr = 323.21 Dx = 1.694 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 9880 reflections
a = 7.5243 (3) Å θ = 2.2–32.0°
b = 14.1861 (6) Å µ = 3.40 mm1
c = 12.4488 (6) Å T = 100 K
β = 107.508 (1)° Block, colourless
V = 1267.23 (10) Å3 0.26 × 0.14 × 0.14 mm
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer 9338 independent reflections
Radiation source: fine-focus sealed tube 8701 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 33.6°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.466, Tmax = 0.646 k = −21→21
30838 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0136P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
9338 reflections Δρmax = 0.58 e Å3
326 parameters Δρmin = −0.46 e Å3
1 restraint Absolute structure: Flack (1983), with 4219 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.017 (4)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1A 1.01261 (3) 0.351681 (14) 0.70723 (2) 0.02637 (6)
S1A 0.68748 (7) 0.33990 (4) 0.48703 (5) 0.01897 (10)
O1A 0.4724 (3) 0.32508 (11) 0.26929 (13) 0.0249 (3)
N1A 0.4385 (2) 0.34234 (16) 0.59269 (14) 0.0167 (3)
N2A 0.3089 (3) 0.33380 (14) 0.39687 (16) 0.0189 (4)
C1A 0.7366 (3) 0.39986 (15) 0.87748 (19) 0.0214 (4)
H1AA 0.8276 0.4358 0.8601 0.026*
C2A 0.7282 (3) 0.39718 (17) 0.98699 (19) 0.0243 (5)
H2AA 0.8110 0.4331 1.0423 0.029*
C3A 0.5979 (3) 0.34160 (19) 1.01478 (19) 0.0246 (5)
H3AA 0.5954 0.3389 1.0890 0.030*
C4A 0.4701 (3) 0.28953 (17) 0.93178 (19) 0.0225 (4)
H4AA 0.3815 0.2524 0.9501 0.027*
C5A 0.4761 (3) 0.29351 (16) 0.82224 (18) 0.0179 (4)
H5AA 0.3905 0.2590 0.7667 0.022*
C6A 0.6091 (3) 0.34881 (16) 0.79332 (17) 0.0162 (4)
C7A 0.6099 (3) 0.34893 (16) 0.67534 (17) 0.0167 (4)
C8A 0.7554 (3) 0.34945 (18) 0.63183 (17) 0.0176 (4)
C9A 0.4600 (3) 0.33758 (15) 0.49273 (18) 0.0166 (4)
C10A 0.1169 (3) 0.34222 (19) 0.40144 (19) 0.0225 (4)
H10A 0.0897 0.4061 0.4195 0.027*
H10B 0.0937 0.2992 0.4563 0.027*
C11A 0.0021 (4) 0.31523 (16) 0.2810 (2) 0.0244 (5)
H11A −0.1123 0.3515 0.2568 0.029*
H11B −0.0288 0.2487 0.2762 0.029*
C12A 0.1303 (3) 0.33887 (18) 0.20894 (19) 0.0267 (5)
H12A 0.1118 0.2946 0.1471 0.032*
H12B 0.1068 0.4022 0.1786 0.032*
C13A 0.3242 (3) 0.33079 (14) 0.28908 (19) 0.0212 (4)
Br1B 0.15444 (3) 0.079853 (14) 0.69491 (2) 0.02544 (5)
S1B 0.24659 (7) 0.09024 (4) 0.46979 (4) 0.01913 (10)
O1B 0.2343 (3) 0.11605 (13) 0.25040 (14) 0.0269 (4)
N1B 0.6031 (2) 0.08191 (17) 0.56770 (14) 0.0179 (3)
N2B 0.5265 (3) 0.09060 (15) 0.37119 (14) 0.0191 (3)
C1B 0.5995 (3) 0.02734 (16) 0.85721 (18) 0.0220 (4)
H1BA 0.4904 −0.0079 0.8416 0.026*
C2B 0.7207 (4) 0.03050 (17) 0.96597 (19) 0.0253 (5)
H2BA 0.6929 −0.0037 1.0226 0.030*
C3B 0.8816 (3) 0.0835 (2) 0.99154 (18) 0.0260 (5)
H3BA 0.9604 0.0860 1.0651 0.031*
C4B 0.9255 (3) 0.13339 (18) 0.9064 (2) 0.0234 (5)
H4BA 1.0339 0.1692 0.9229 0.028*
C5B 0.8065 (3) 0.12933 (17) 0.79710 (18) 0.0188 (4)
H5BA 0.8372 0.1619 0.7403 0.023*
C6B 0.6420 (3) 0.07735 (17) 0.77091 (17) 0.0167 (4)
C7B 0.5198 (3) 0.07758 (17) 0.65372 (15) 0.0160 (3)
C8B 0.3295 (3) 0.0800 (2) 0.61500 (18) 0.0194 (4)
C9B 0.4773 (3) 0.08761 (18) 0.47029 (16) 0.0170 (4)
C10B 0.7195 (3) 0.0830 (2) 0.37033 (17) 0.0212 (4)
H10C 0.7822 0.0302 0.4157 0.025*
H10D 0.7884 0.1404 0.3975 0.025*
C11B 0.6969 (4) 0.06701 (18) 0.2457 (2) 0.0272 (5)
H11C 0.7981 0.0963 0.2246 0.033*
H11D 0.6946 0.0002 0.2287 0.033*
C12B 0.5114 (4) 0.11300 (18) 0.18401 (19) 0.0242 (5)
H12C 0.5289 0.1781 0.1657 0.029*
H12D 0.4496 0.0793 0.1151 0.029*
C13B 0.4007 (3) 0.10679 (15) 0.2667 (2) 0.0219 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.01407 (9) 0.02869 (12) 0.03443 (13) −0.00219 (9) 0.00438 (9) 0.00372 (11)
S1A 0.0193 (2) 0.0182 (2) 0.0212 (2) 0.0000 (2) 0.00885 (19) 0.0019 (2)
O1A 0.0317 (9) 0.0245 (8) 0.0207 (7) −0.0017 (7) 0.0111 (7) 0.0014 (6)
N1A 0.0130 (8) 0.0190 (9) 0.0170 (8) 0.0014 (7) 0.0028 (6) 0.0004 (7)
N2A 0.0210 (9) 0.0174 (9) 0.0172 (8) 0.0011 (7) 0.0040 (7) −0.0007 (7)
C1A 0.0223 (11) 0.0151 (9) 0.0232 (10) −0.0031 (8) 0.0016 (9) 0.0011 (8)
C2A 0.0289 (12) 0.0215 (10) 0.0162 (10) 0.0000 (9) −0.0029 (9) −0.0020 (8)
C3A 0.0295 (11) 0.0239 (11) 0.0185 (10) 0.0055 (10) 0.0042 (9) 0.0003 (10)
C4A 0.0231 (11) 0.0249 (10) 0.0208 (11) 0.0014 (9) 0.0084 (9) −0.0008 (9)
C5A 0.0158 (9) 0.0199 (10) 0.0170 (10) −0.0001 (7) 0.0032 (8) −0.0018 (7)
C6A 0.0134 (8) 0.0172 (9) 0.0162 (8) 0.0039 (8) 0.0015 (7) 0.0023 (8)
C7A 0.0154 (8) 0.0143 (8) 0.0186 (9) −0.0006 (8) 0.0023 (7) 0.0007 (8)
C8A 0.0133 (8) 0.0187 (9) 0.0193 (9) −0.0007 (9) 0.0024 (7) 0.0020 (9)
C9A 0.0151 (9) 0.0164 (8) 0.0171 (9) 0.0017 (8) 0.0031 (8) 0.0013 (7)
C10A 0.0180 (10) 0.0251 (11) 0.0212 (10) 0.0043 (9) 0.0013 (8) −0.0024 (9)
C11A 0.0264 (12) 0.0250 (9) 0.0191 (10) 0.0000 (9) 0.0031 (9) −0.0020 (9)
C12A 0.0322 (13) 0.0242 (11) 0.0193 (10) −0.0004 (10) 0.0008 (9) 0.0020 (9)
C13A 0.0292 (11) 0.0148 (9) 0.0180 (9) 0.0006 (8) 0.0047 (10) 0.0016 (7)
Br1B 0.02277 (10) 0.02499 (10) 0.03492 (12) −0.00498 (9) 0.01830 (9) −0.00685 (11)
S1B 0.0166 (2) 0.0177 (2) 0.0224 (2) 0.0005 (2) 0.00493 (19) −0.0016 (2)
O1B 0.0266 (9) 0.0261 (8) 0.0232 (8) 0.0029 (7) 0.0002 (7) −0.0029 (7)
N1B 0.0194 (8) 0.0191 (7) 0.0175 (7) 0.0016 (9) 0.0092 (6) 0.0007 (8)
N2B 0.0216 (9) 0.0206 (8) 0.0159 (7) 0.0007 (8) 0.0068 (7) 0.0003 (7)
C1B 0.0279 (11) 0.0214 (10) 0.0198 (10) −0.0028 (9) 0.0117 (9) −0.0028 (8)
C2B 0.0368 (13) 0.0242 (11) 0.0183 (11) 0.0021 (9) 0.0134 (10) −0.0002 (8)
C3B 0.0294 (12) 0.0310 (11) 0.0174 (9) 0.0074 (12) 0.0067 (8) −0.0033 (11)
C4B 0.0180 (10) 0.0266 (11) 0.0262 (12) 0.0014 (9) 0.0075 (9) −0.0016 (9)
C5B 0.0176 (10) 0.0220 (11) 0.0191 (10) 0.0051 (8) 0.0089 (9) 0.0024 (8)
C6B 0.0214 (9) 0.0134 (8) 0.0182 (9) 0.0021 (9) 0.0104 (7) −0.0008 (9)
C7B 0.0190 (8) 0.0132 (7) 0.0189 (8) 0.0000 (8) 0.0105 (7) 0.0000 (8)
C8B 0.0200 (9) 0.0165 (8) 0.0246 (10) −0.0014 (9) 0.0113 (8) −0.0022 (10)
C9B 0.0171 (9) 0.0168 (8) 0.0178 (9) 0.0027 (8) 0.0061 (7) 0.0037 (9)
C10B 0.0200 (10) 0.0269 (10) 0.0168 (9) −0.0025 (11) 0.0058 (7) −0.0016 (11)
C11B 0.0349 (13) 0.0291 (13) 0.0215 (10) −0.0019 (10) 0.0146 (10) −0.0015 (9)
C12B 0.0358 (13) 0.0206 (10) 0.0168 (10) 0.0016 (10) 0.0086 (9) −0.0012 (8)
C13B 0.0285 (12) 0.0156 (10) 0.0195 (10) 0.0018 (8) 0.0042 (9) −0.0019 (7)

Geometric parameters (Å, º)

Br1A—C8A 1.880 (2) Br1B—C8B 1.874 (2)
S1A—C8A 1.725 (2) S1B—C8B 1.732 (2)
S1A—C9A 1.7349 (19) S1B—C9B 1.734 (2)
O1A—C13A 1.214 (3) O1B—C13B 1.214 (3)
N1A—C9A 1.304 (3) N1B—C9B 1.297 (3)
N1A—C7A 1.390 (3) N1B—C7B 1.395 (2)
N2A—C9A 1.379 (3) N2B—C13B 1.379 (3)
N2A—C13A 1.381 (3) N2B—C9B 1.391 (3)
N2A—C10A 1.468 (3) N2B—C10B 1.460 (3)
C1A—C2A 1.384 (3) C1B—C2B 1.387 (3)
C1A—C6A 1.392 (3) C1B—C6B 1.402 (3)
C1A—H1AA 0.9300 C1B—H1BA 0.9300
C2A—C3A 1.381 (4) C2B—C3B 1.379 (4)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.393 (3) C3B—C4B 1.393 (4)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.379 (3) C4B—C5B 1.387 (3)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.401 (3) C5B—C6B 1.393 (3)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—C7A 1.471 (3) C6B—C7B 1.472 (3)
C7A—C8A 1.360 (3) C7B—C8B 1.367 (3)
C10A—C11A 1.536 (3) C10B—C11B 1.526 (3)
C10A—H10A 0.9700 C10B—H10C 0.9700
C10A—H10B 0.9700 C10B—H10D 0.9700
C11A—C12A 1.539 (4) C11B—C12B 1.522 (4)
C11A—H11A 0.9700 C11B—H11C 0.9700
C11A—H11B 0.9700 C11B—H11D 0.9700
C12A—C13A 1.504 (3) C12B—C13B 1.509 (4)
C12A—H12A 0.9700 C12B—H12C 0.9700
C12A—H12B 0.9700 C12B—H12D 0.9700
C8A—S1A—C9A 86.83 (10) C8B—S1B—C9B 87.07 (10)
C9A—N1A—C7A 110.89 (17) C9B—N1B—C7B 110.50 (17)
C9A—N2A—C13A 123.6 (2) C13B—N2B—C9B 123.5 (2)
C9A—N2A—C10A 121.85 (18) C13B—N2B—C10B 114.04 (18)
C13A—N2A—C10A 114.25 (19) C9B—N2B—C10B 122.35 (17)
C2A—C1A—C6A 120.1 (2) C2B—C1B—C6B 119.8 (2)
C2A—C1A—H1AA 119.9 C2B—C1B—H1BA 120.1
C6A—C1A—H1AA 119.9 C6B—C1B—H1BA 120.1
C3A—C2A—C1A 120.6 (2) C3B—C2B—C1B 121.1 (2)
C3A—C2A—H2AA 119.7 C3B—C2B—H2BA 119.4
C1A—C2A—H2AA 119.7 C1B—C2B—H2BA 119.4
C2A—C3A—C4A 120.1 (2) C2B—C3B—C4B 119.6 (2)
C2A—C3A—H3AA 120.0 C2B—C3B—H3BA 120.2
C4A—C3A—H3AA 120.0 C4B—C3B—H3BA 120.2
C5A—C4A—C3A 119.4 (2) C5B—C4B—C3B 119.6 (2)
C5A—C4A—H4AA 120.3 C5B—C4B—H4BA 120.2
C3A—C4A—H4AA 120.3 C3B—C4B—H4BA 120.2
C4A—C5A—C6A 121.0 (2) C4B—C5B—C6B 121.2 (2)
C4A—C5A—H5AA 119.5 C4B—C5B—H5BA 119.4
C6A—C5A—H5AA 119.5 C6B—C5B—H5BA 119.4
C1A—C6A—C5A 118.8 (2) C5B—C6B—C1B 118.7 (2)
C1A—C6A—C7A 122.8 (2) C5B—C6B—C7B 118.49 (19)
C5A—C6A—C7A 118.37 (19) C1B—C6B—C7B 122.8 (2)
C8A—C7A—N1A 112.61 (18) C8B—C7B—N1B 113.14 (17)
C8A—C7A—C6A 130.06 (18) C8B—C7B—C6B 128.69 (17)
N1A—C7A—C6A 117.22 (18) N1B—C7B—C6B 118.04 (17)
C7A—C8A—S1A 113.25 (15) C7B—C8B—S1B 112.33 (15)
C7A—C8A—Br1A 129.24 (16) C7B—C8B—Br1B 129.92 (16)
S1A—C8A—Br1A 117.40 (11) S1B—C8B—Br1B 117.67 (11)
N1A—C9A—N2A 121.45 (18) N1B—C9B—N2B 121.12 (18)
N1A—C9A—S1A 116.41 (15) N1B—C9B—S1B 116.93 (15)
N2A—C9A—S1A 122.11 (16) N2B—C9B—S1B 121.95 (15)
N2A—C10A—C11A 102.29 (19) N2B—C10B—C11B 102.22 (17)
N2A—C10A—H10A 111.3 N2B—C10B—H10C 111.3
C11A—C10A—H10A 111.3 C11B—C10B—H10C 111.3
N2A—C10A—H10B 111.3 N2B—C10B—H10D 111.3
C11A—C10A—H10B 111.3 C11B—C10B—H10D 111.3
H10A—C10A—H10B 109.2 H10C—C10B—H10D 109.2
C10A—C11A—C12A 104.3 (2) C12B—C11B—C10B 104.71 (19)
C10A—C11A—H11A 110.9 C12B—C11B—H11C 110.8
C12A—C11A—H11A 110.9 C10B—C11B—H11C 110.8
C10A—C11A—H11B 110.9 C12B—C11B—H11D 110.8
C12A—C11A—H11B 110.9 C10B—C11B—H11D 110.8
H11A—C11A—H11B 108.9 H11C—C11B—H11D 108.9
C13A—C12A—C11A 104.47 (19) C13B—C12B—C11B 103.98 (18)
C13A—C12A—H12A 110.9 C13B—C12B—H12C 111.0
C11A—C12A—H12A 110.9 C11B—C12B—H12C 111.0
C13A—C12A—H12B 110.9 C13B—C12B—H12D 111.0
C11A—C12A—H12B 110.9 C11B—C12B—H12D 111.0
H12A—C12A—H12B 108.9 H12C—C12B—H12D 109.0
O1A—C13A—N2A 123.3 (2) O1B—C13B—N2B 123.8 (2)
O1A—C13A—C12A 129.6 (2) O1B—C13B—C12B 129.3 (2)
N2A—C13A—C12A 107.1 (2) N2B—C13B—C12B 106.9 (2)
C6A—C1A—C2A—C3A 2.2 (3) C6B—C1B—C2B—C3B 1.2 (4)
C1A—C2A—C3A—C4A −1.7 (4) C1B—C2B—C3B—C4B −1.3 (4)
C2A—C3A—C4A—C5A 0.5 (4) C2B—C3B—C4B—C5B 0.2 (4)
C3A—C4A—C5A—C6A 0.2 (3) C3B—C4B—C5B—C6B 1.0 (3)
C2A—C1A—C6A—C5A −1.4 (3) C4B—C5B—C6B—C1B −1.1 (3)
C2A—C1A—C6A—C7A 179.7 (2) C4B—C5B—C6B—C7B 178.7 (2)
C4A—C5A—C6A—C1A 0.2 (3) C2B—C1B—C6B—C5B 0.0 (3)
C4A—C5A—C6A—C7A 179.1 (2) C2B—C1B—C6B—C7B −179.8 (2)
C9A—N1A—C7A—C8A 0.4 (3) C9B—N1B—C7B—C8B 0.3 (3)
C9A—N1A—C7A—C6A −176.2 (2) C9B—N1B—C7B—C6B −175.9 (2)
C1A—C6A—C7A—C8A 38.0 (4) C5B—C6B—C7B—C8B −141.2 (3)
C5A—C6A—C7A—C8A −140.9 (3) C1B—C6B—C7B—C8B 38.6 (4)
C1A—C6A—C7A—N1A −146.1 (2) C5B—C6B—C7B—N1B 34.3 (3)
C5A—C6A—C7A—N1A 35.1 (3) C1B—C6B—C7B—N1B −145.9 (2)
N1A—C7A—C8A—S1A −1.0 (3) N1B—C7B—C8B—S1B −1.3 (3)
C6A—C7A—C8A—S1A 175.1 (2) C6B—C7B—C8B—S1B 174.4 (2)
N1A—C7A—C8A—Br1A −176.95 (19) N1B—C7B—C8B—Br1B −177.9 (2)
C6A—C7A—C8A—Br1A −0.8 (4) C6B—C7B—C8B—Br1B −2.2 (4)
C9A—S1A—C8A—C7A 0.9 (2) C9B—S1B—C8B—C7B 1.4 (2)
C9A—S1A—C8A—Br1A 177.41 (16) C9B—S1B—C8B—Br1B 178.51 (17)
C7A—N1A—C9A—N2A −177.8 (2) C7B—N1B—C9B—N2B −178.5 (2)
C7A—N1A—C9A—S1A 0.3 (3) C7B—N1B—C9B—S1B 0.9 (3)
C13A—N2A—C9A—N1A 178.5 (2) C13B—N2B—C9B—N1B −172.8 (2)
C10A—N2A—C9A—N1A 4.8 (3) C10B—N2B—C9B—N1B 3.0 (4)
C13A—N2A—C9A—S1A 0.5 (3) C13B—N2B—C9B—S1B 7.8 (3)
C10A—N2A—C9A—S1A −173.23 (18) C10B—N2B—C9B—S1B −176.4 (2)
C8A—S1A—C9A—N1A −0.7 (2) C8B—S1B—C9B—N1B −1.4 (2)
C8A—S1A—C9A—N2A 177.4 (2) C8B—S1B—C9B—N2B 178.1 (2)
C9A—N2A—C10A—C11A −169.7 (2) C13B—N2B—C10B—C11B −16.4 (3)
C13A—N2A—C10A—C11A 16.0 (3) C9B—N2B—C10B—C11B 167.4 (2)
N2A—C10A—C11A—C12A −25.5 (2) N2B—C10B—C11B—C12B 26.6 (3)
C10A—C11A—C12A—C13A 26.6 (2) C10B—C11B—C12B—C13B −27.8 (3)
C9A—N2A—C13A—O1A 4.9 (3) C9B—N2B—C13B—O1B −3.2 (4)
C10A—N2A—C13A—O1A 179.1 (2) C10B—N2B—C13B—O1B −179.3 (2)
C9A—N2A—C13A—C12A −173.4 (2) C9B—N2B—C13B—C12B 175.1 (2)
C10A—N2A—C13A—C12A 0.8 (3) C10B—N2B—C13B—C12B −1.0 (3)
C11A—C12A—C13A—O1A 164.4 (2) C11B—C12B—C13B—O1B −163.6 (2)
C11A—C12A—C13A—N2A −17.4 (2) C11B—C12B—C13B—N2B 18.2 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1B–C6B ring.

D—H···A D—H H···A D···A D—H···A
C12A—H12B···Cg1i 0.97 2.89 3.767 (3) 151

Symmetry code: (i) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5131).

References

  1. Bhaskar, V. H., Kumar, M., Sangameswaran, B. & Balakrishnan, B. R. (2008). Rasayan J. Chem. 1, 218–223.
  2. Bhattacharya, P., Leonard, J. T. & Roy, K. (2005). Bioorg. Med. Chem. 13, 1159–1165. [DOI] [PubMed]
  3. Bishayee, A., Karmaker, R., Mandal, A., Kundu, S. N. & Chaterjee, M. (1997). Eur. J. Cancer Prev. 6, 58–70. [DOI] [PubMed]
  4. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chitamber, C. R. & Wereley, J. P. (1997). J. Biol. Chem. 272, 12151–12157. [DOI] [PubMed]
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Sharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890–897. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spector, F. C., Liang, L., Giordano, H., Sivaraja, M. & Peterson, M. G. (1998). J. Virol. 72, 6979–6987. [DOI] [PMC free article] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201954X/is5131sup1.cif

e-68-o1738-sup1.cif (33.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201954X/is5131Isup2.hkl

e-68-o1738-Isup2.hkl (456.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201954X/is5131Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES