Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1741. doi: 10.1107/S1600536812020776

6-Chloro-2-phenyl-3-(2-phenyl­ethyn­yl)quinoxaline

Xi-Lin Ouyang a, Miao Ouyang b, Shi-Wen Huang a,*
PMCID: PMC3379328  PMID: 22719526

Abstract

In the title compound, C22H13ClN2, the quinoxaline ring system is close to planar [maximum deviation = 0.061 (2) Å]. The phenyl ring at the 2-position and the phenyl ring of the phenyl­ethynyl substituent make dihedral angles of 49.32 (7) and 11.99 (7) °, respectively, with the quinoxaline mean plane. The two phenyl rings are inclined to one another by 61.27 (9)°. In the crystal, mol­ecules are linked by C—H⋯π and π–π inter­actions [centroid–centroid distances = 3.6210 (12) and 3.8091 (12) Å].

Related literature  

For the biological activity of quinoxaline derivatives, see: Rodrigo et al. (2002); Watkins et al. (2009); Sashidhara et al. (2009). For the crystal structures of quinoxaline derivatives, see: Hegedus et al. (2003); Naraso et al. (2006); Hassan et al. (2010); Ammermann et al. (2008); Daouda et al. (2011); Ramli et al. (2012).graphic file with name e-68-o1741-scheme1.jpg

Experimental  

Crystal data  

  • C22H13ClN2

  • M r = 340.79

  • Triclinic, Inline graphic

  • a = 8.8652 (13) Å

  • b = 9.8591 (8) Å

  • c = 10.9740 (17) Å

  • α = 73.032 (15)°

  • β = 81.036 (17)°

  • γ = 64.374 (13)°

  • V = 826.68 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 223 K

  • 0.70 × 0.45 × 0.20 mm

Data collection  

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.649, T max = 0.954

  • 7504 measured reflections

  • 3714 independent reflections

  • 2855 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.128

  • S = 1.07

  • 3714 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2002); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020776/su2414sup1.cif

e-68-o1741-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020776/su2414Isup2.hkl

e-68-o1741-Isup2.hkl (182.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020776/su2414Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg2i 0.94 3.00 3.845 (2) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was funded by the Project of the Education Department of Guangxi Province (No. 201106LX593) and the Youth Foundation of Hechi University (No. 2011B-N004).

supplementary crystallographic information

Comment

The design of small molecular weight compounds has aroused much interest in the past decades due to the advances in targeted therapeutics coupled with novel techniques in target identification. It is well know that quinoxalines have broad applications in the fields of medicine and pharmaceuticals. It has been shown that many quinoxaline derivatives exhibit good biological activities, such as antituberculous activities (Rodrigo et al., 2002), antioxidative properties (Watkins et al., 2009), and antidyslipidemic (Sashidhara et al., 2009). Recently, a large number of crystal structures of quinoxaline derivatives have been reported (Hegedus et al., 2003; Naraso et al., 2006; Hassan et al., 2010; Ammermann et al., 2008; Daouda et al., 2011; Ramli et al., 2012).

In the title compound (Fig. 1) the phenyl ring of the phenylethynyl substituent is twisted by 11.99 (7)° out of the mean plane of the quinoxaline fused-ring system [planar to within 0.061 (2) Å]. The phenyl ring of the substituent at the 2-position, C7, makes dihedral angles of 49.32 (7)° and 61.27 (9)°, respectively, with the quinoxaline mean plane and the phenylethynyl phenyl ring.

In the crystal (Fig. 2), molecules are linked by C—H···π interactions involving the phenylethynyl phenyl ring (Table 1), and by π–π interactions involving inversion related quinoxaline rings and the phenylethynyl phenyl ring [Cg1···Cg1i 3.6210 (12) Å, interplanar spacing of 3.3635 (7) Å, slippage of 1.341 Å; Cg1···Cg2ii 3.8091 (12) Å; Cg1 is the centroid of the C1-C6 ring; Cg2 is the centroid of the C17-C22 ring; symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y, -z+2].

Footnote to Table 1: Cg2 is the centroid of the C17-C22 ring.

Experimental

4-Chloro-1,2-diaminobenzene (2.5 mmol), CuCl (0.1 mmol), chlorobenzene (3 ml) and phenylethynylene(1 mmol) were added to a sealed tube and heated to 343 K by stirring. After the completion of the reaction (as monitored by TLC), the inorganic material salt was filtered and the reaction mixture was extracted with EtOAc. The mixture was separated after washed by saturated NaCl solution, then the oily layer was dried by anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product obtained was purified by column chromatography (eluent: 50:1 Petroleum ether–EtOAc) to give the title compound. Block-like yellow crystals were obtained by slow evaporation of the solvents.

Refinement

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 Å with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title molecule showing the atom-labeling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis.

Crystal data

C22H13ClN2 Z = 2
Mr = 340.79 F(000) = 352
Triclinic, P1 Dx = 1.369 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 8.8652 (13) Å Cell parameters from 3874 reflections
b = 9.8591 (8) Å θ = 3.2–27.5°
c = 10.9740 (17) Å µ = 0.24 mm1
α = 73.032 (15)° T = 223 K
β = 81.036 (17)° Block, yellow
γ = 64.374 (13)° 0.70 × 0.45 × 0.20 mm
V = 826.68 (19) Å3

Data collection

Rigaku Saturn diffractometer 3714 independent reflections
Radiation source: fine-focus sealed tube 2855 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
Detector resolution: 14.63 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −11→9
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −12→12
Tmin = 0.649, Tmax = 0.954 l = −14→10
7504 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0712P)2] where P = (Fo2 + 2Fc2)/3
3714 reflections (Δ/σ)max < 0.001
227 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.11370 (6) 0.42900 (6) 1.28280 (4) 0.05093 (18)
N1 0.47258 (16) 0.32096 (14) 0.93213 (12) 0.0299 (3)
N2 0.26481 (16) 0.16607 (15) 0.94729 (12) 0.0314 (3)
C1 0.05364 (19) 0.40009 (19) 1.17229 (15) 0.0344 (4)
C2 0.1450 (2) 0.49110 (19) 1.15630 (15) 0.0349 (4)
H2 0.1121 0.5680 1.2012 0.042*
C3 0.28190 (19) 0.46636 (18) 1.07482 (15) 0.0326 (4)
H3 0.3446 0.5255 1.0643 0.039*
C4 0.32946 (18) 0.35241 (17) 1.00641 (14) 0.0286 (3)
C5 0.22960 (19) 0.26891 (18) 1.01856 (14) 0.0298 (3)
C6 0.0918 (2) 0.29202 (19) 1.10582 (15) 0.0338 (4)
H6 0.0276 0.2339 1.1178 0.041*
C7 0.51048 (19) 0.21689 (17) 0.86690 (14) 0.0292 (3)
C8 0.40000 (18) 0.14242 (17) 0.87130 (14) 0.0288 (3)
C9 0.67530 (19) 0.17448 (17) 0.79653 (15) 0.0308 (3)
C10 0.8145 (2) 0.14816 (19) 0.85823 (17) 0.0379 (4)
H10 0.8026 0.1569 0.9426 0.045*
C11 0.9711 (2) 0.1090 (2) 0.79661 (19) 0.0456 (5)
H11 1.0649 0.0899 0.8396 0.055*
C12 0.9889 (2) 0.0981 (2) 0.6723 (2) 0.0485 (5)
H12 1.0947 0.0714 0.6305 0.058*
C13 0.8506 (2) 0.1266 (2) 0.60934 (18) 0.0459 (5)
H13 0.8628 0.1209 0.5241 0.055*
C14 0.6945 (2) 0.16343 (19) 0.67054 (16) 0.0366 (4)
H14 0.6016 0.1810 0.6274 0.044*
C15 0.43695 (19) 0.03324 (18) 0.79721 (15) 0.0322 (4)
C16 0.4708 (2) −0.06017 (18) 0.73719 (15) 0.0339 (4)
C17 0.5261 (2) −0.17824 (18) 0.66936 (15) 0.0324 (4)
C18 0.6633 (2) −0.1962 (2) 0.58335 (16) 0.0397 (4)
H18 0.7119 −0.1241 0.5638 0.048*
C19 0.7275 (2) −0.3183 (2) 0.52727 (17) 0.0434 (4)
H19 0.8201 −0.3299 0.4699 0.052*
C20 0.6561 (2) −0.4245 (2) 0.55506 (17) 0.0420 (4)
H20 0.7017 −0.5093 0.5179 0.050*
C21 0.5186 (2) −0.4060 (2) 0.63702 (17) 0.0399 (4)
H21 0.4698 −0.4777 0.6547 0.048*
C22 0.4516 (2) −0.28344 (19) 0.69351 (16) 0.0364 (4)
H22 0.3562 −0.2705 0.7481 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0412 (3) 0.0698 (3) 0.0470 (3) −0.0267 (2) 0.0169 (2) −0.0255 (2)
N1 0.0286 (6) 0.0311 (7) 0.0339 (7) −0.0147 (6) 0.0008 (6) −0.0106 (6)
N2 0.0298 (7) 0.0338 (7) 0.0353 (7) −0.0166 (6) −0.0003 (6) −0.0103 (6)
C1 0.0287 (8) 0.0418 (9) 0.0311 (8) −0.0133 (7) 0.0021 (7) −0.0102 (7)
C2 0.0334 (8) 0.0378 (9) 0.0358 (9) −0.0136 (7) 0.0004 (7) −0.0151 (7)
C3 0.0332 (8) 0.0334 (8) 0.0358 (8) −0.0158 (7) −0.0027 (7) −0.0112 (7)
C4 0.0255 (7) 0.0310 (8) 0.0307 (8) −0.0131 (7) −0.0008 (6) −0.0075 (7)
C5 0.0287 (8) 0.0306 (8) 0.0309 (8) −0.0127 (7) −0.0032 (6) −0.0070 (7)
C6 0.0306 (8) 0.0387 (9) 0.0356 (8) −0.0181 (7) 0.0014 (7) −0.0092 (7)
C7 0.0277 (8) 0.0296 (8) 0.0308 (8) −0.0129 (6) −0.0011 (6) −0.0062 (6)
C8 0.0272 (7) 0.0281 (8) 0.0325 (8) −0.0115 (6) −0.0018 (7) −0.0089 (7)
C9 0.0287 (8) 0.0277 (8) 0.0386 (8) −0.0145 (7) 0.0044 (7) −0.0100 (7)
C10 0.0348 (9) 0.0410 (9) 0.0446 (9) −0.0194 (8) 0.0025 (8) −0.0164 (8)
C11 0.0289 (8) 0.0484 (11) 0.0660 (12) −0.0191 (8) 0.0024 (9) −0.0207 (9)
C12 0.0356 (9) 0.0501 (11) 0.0656 (12) −0.0230 (9) 0.0192 (9) −0.0254 (10)
C13 0.0480 (10) 0.0495 (11) 0.0443 (10) −0.0244 (9) 0.0154 (9) −0.0195 (9)
C14 0.0358 (9) 0.0390 (9) 0.0380 (9) −0.0177 (8) 0.0043 (7) −0.0130 (7)
C15 0.0297 (8) 0.0339 (8) 0.0372 (9) −0.0161 (7) −0.0002 (7) −0.0105 (7)
C16 0.0333 (8) 0.0340 (9) 0.0372 (9) −0.0165 (7) −0.0018 (7) −0.0082 (7)
C17 0.0331 (8) 0.0313 (8) 0.0343 (8) −0.0132 (7) −0.0034 (7) −0.0096 (7)
C18 0.0445 (10) 0.0375 (9) 0.0411 (9) −0.0212 (8) 0.0023 (8) −0.0107 (8)
C19 0.0442 (10) 0.0480 (10) 0.0386 (9) −0.0195 (9) 0.0078 (8) −0.0157 (8)
C20 0.0511 (10) 0.0369 (9) 0.0404 (9) −0.0144 (8) −0.0025 (8) −0.0182 (8)
C21 0.0454 (10) 0.0386 (9) 0.0447 (10) −0.0219 (8) −0.0052 (8) −0.0140 (8)
C22 0.0357 (9) 0.0385 (9) 0.0406 (9) −0.0177 (8) −0.0005 (7) −0.0143 (8)

Geometric parameters (Å, º)

Cl1—C1 1.7401 (16) C11—C12 1.378 (3)
N1—C7 1.3168 (18) C11—H11 0.9400
N1—C4 1.3621 (18) C12—C13 1.383 (3)
N2—C8 1.3216 (19) C12—H12 0.9400
N2—C5 1.3602 (19) C13—C14 1.384 (2)
C1—C6 1.359 (2) C13—H13 0.9400
C1—C2 1.408 (2) C14—H14 0.9400
C2—C3 1.366 (2) C15—C16 1.194 (2)
C2—H2 0.9400 C16—C17 1.431 (2)
C3—C4 1.410 (2) C17—C18 1.398 (2)
C3—H3 0.9400 C17—C22 1.400 (2)
C4—C5 1.417 (2) C18—C19 1.373 (2)
C5—C6 1.408 (2) C18—H18 0.9400
C6—H6 0.9400 C19—C20 1.384 (2)
C7—C8 1.445 (2) C19—H19 0.9400
C7—C9 1.488 (2) C20—C21 1.375 (2)
C8—C15 1.432 (2) C20—H20 0.9400
C9—C10 1.389 (2) C21—C22 1.378 (2)
C9—C14 1.397 (2) C21—H21 0.9400
C10—C11 1.389 (2) C22—H22 0.9400
C10—H10 0.9400
C7—N1—C4 118.09 (11) C12—C11—C10 119.90 (17)
C8—N2—C5 117.11 (12) C12—C11—H11 120.1
C6—C1—C2 122.68 (14) C10—C11—H11 120.1
C6—C1—Cl1 119.67 (12) C11—C12—C13 119.87 (16)
C2—C1—Cl1 117.65 (12) C11—C12—H12 120.1
C3—C2—C1 119.21 (14) C13—C12—H12 120.1
C3—C2—H2 120.4 C12—C13—C14 120.66 (17)
C1—C2—H2 120.4 C12—C13—H13 119.7
C2—C3—C4 120.20 (13) C14—C13—H13 119.7
C2—C3—H3 119.9 C13—C14—C9 119.90 (16)
C4—C3—H3 119.9 C13—C14—H14 120.0
N1—C4—C3 119.84 (12) C9—C14—H14 120.0
N1—C4—C5 120.75 (13) C16—C15—C8 178.49 (18)
C3—C4—C5 119.39 (13) C15—C16—C17 174.90 (17)
N2—C5—C6 119.21 (12) C18—C17—C22 118.90 (14)
N2—C5—C4 121.04 (13) C18—C17—C16 120.00 (13)
C6—C5—C4 119.75 (13) C22—C17—C16 120.97 (14)
C1—C6—C5 118.58 (13) C19—C18—C17 120.41 (14)
C1—C6—H6 120.7 C19—C18—H18 119.8
C5—C6—H6 120.7 C17—C18—H18 119.8
N1—C7—C8 120.60 (12) C18—C19—C20 120.15 (15)
N1—C7—C9 116.64 (12) C18—C19—H19 119.9
C8—C7—C9 122.65 (12) C20—C19—H19 119.9
N2—C8—C15 116.82 (12) C21—C20—C19 119.98 (14)
N2—C8—C7 122.04 (12) C21—C20—H20 120.0
C15—C8—C7 121.08 (13) C19—C20—H20 120.0
C10—C9—C14 118.97 (14) C20—C21—C22 120.73 (14)
C10—C9—C7 118.40 (14) C20—C21—H21 119.6
C14—C9—C7 122.62 (15) C22—C21—H21 119.6
C9—C10—C11 120.69 (16) C21—C22—C17 119.76 (15)
C9—C10—H10 119.7 C21—C22—H22 120.1
C11—C10—H10 119.7 C17—C22—H22 120.1
C6—C1—C2—C3 −2.8 (3) N1—C7—C9—C10 44.3 (2)
Cl1—C1—C2—C3 176.92 (13) C8—C7—C9—C10 −132.03 (16)
C1—C2—C3—C4 0.9 (3) N1—C7—C9—C14 −134.37 (16)
C7—N1—C4—C3 −178.15 (14) C8—C7—C9—C14 49.3 (2)
C7—N1—C4—C5 3.5 (2) C14—C9—C10—C11 −1.0 (2)
C2—C3—C4—N1 −175.48 (15) C7—C9—C10—C11 −179.69 (14)
C2—C3—C4—C5 2.9 (2) C9—C10—C11—C12 0.9 (3)
C8—N2—C5—C6 −176.75 (14) C10—C11—C12—C13 0.1 (3)
C8—N2—C5—C4 3.1 (2) C11—C12—C13—C14 −1.1 (3)
N1—C4—C5—N2 −6.4 (2) C12—C13—C14—C9 1.0 (3)
C3—C4—C5—N2 175.30 (14) C10—C9—C14—C13 0.0 (2)
N1—C4—C5—C6 173.49 (14) C7—C9—C14—C13 178.65 (14)
C3—C4—C5—C6 −4.8 (2) N2—C8—C15—C16 −108 (6)
C2—C1—C6—C5 0.8 (3) C7—C8—C15—C16 70 (6)
Cl1—C1—C6—C5 −178.91 (12) C8—C15—C16—C17 −23 (7)
N2—C5—C6—C1 −177.12 (15) C15—C16—C17—C18 −56.4 (18)
C4—C5—C6—C1 3.0 (2) C15—C16—C17—C22 119.5 (18)
C4—N1—C7—C8 2.0 (2) C22—C17—C18—C19 −2.4 (3)
C4—N1—C7—C9 −174.41 (13) C16—C17—C18—C19 173.60 (16)
C5—N2—C8—C15 179.58 (14) C17—C18—C19—C20 0.3 (3)
C5—N2—C8—C7 2.5 (2) C18—C19—C20—C21 1.3 (3)
N1—C7—C8—N2 −5.3 (2) C19—C20—C21—C22 −0.8 (3)
C9—C7—C8—N2 170.89 (15) C20—C21—C22—C17 −1.3 (3)
N1—C7—C8—C15 177.74 (14) C18—C17—C22—C21 2.9 (3)
C9—C7—C8—C15 −6.1 (2) C16—C17—C22—C21 −173.08 (15)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C17–C22 ring.

D—H···A D—H H···A D···A D—H···A
C14—H14···Cg2i 0.94 3.00 3.845 (2) 151

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2414).

References

  1. Ammermann, S., Daniliuc, C., Jones, P. G., Mont, W.-W. du & Johannes, H.-H. (2008). Acta Cryst. E64, o1205–o1206. [DOI] [PMC free article] [PubMed]
  2. Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235. [DOI] [PMC free article] [PubMed]
  3. Hassan, N. D., Abdullah, Z., Tajuddin, H. A., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2429. [DOI] [PMC free article] [PubMed]
  4. Hegedus, L. S., Greenberg, M. M., Wendling, J. J. & Bullock, J. P. (2003). J. Org. Chem. 68, 4179–4188. [DOI] [PubMed]
  5. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  6. Naraso, Nishida, J., Kumaki, D., Tokito, S. & Yamashita, Y. (2006). J. Am. Chem. Soc. 128, 9598–9599. [DOI] [PubMed]
  7. Ramli, Y., Zouihri, H., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o241. [DOI] [PMC free article] [PubMed]
  8. Rigaku (2002). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  9. Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143.
  10. Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813–1818. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580–585.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020776/su2414sup1.cif

e-68-o1741-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020776/su2414Isup2.hkl

e-68-o1741-Isup2.hkl (182.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020776/su2414Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES