Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1744. doi: 10.1107/S1600536812021216

1-{[3-(2-Chloro-3,3,3-trifluoro­prop-1-en­yl)-2,2-dimethyl­cyclo­propan-1-yl]carbon­yl}-3-(methyl­sulfon­yl)imidazolidin-2-one

Na-Bo Sun a, Guo-Wu Rao b,*, Jian-Bo Chu c
PMCID: PMC3379331  PMID: 22719529

Abstract

In the title mol­ecule, C13H16ClF3N2O4S, the imidazolidine ring is approximately planar, the largest deviation from this plane being 0.025 (3) Å. The cyclo­propane ring forms a dihedral angle of 64.1 (2)° with the imidazolidine ring. In the crystal, C—H⋯O hydrogen bonds are observed.

Related literature  

For the biological activities of pyrethroids, see: Chen & Yu (1991); Sun et al. (2008). For the crystal structures of similar compounds, see: Sun, Shen, Rao et al. (2006); Sun, Shen, Zheng et al. (2006). For the synthesis of the title compound, see: Sun et al. (2008).graphic file with name e-68-o1744-scheme1.jpg

Experimental  

Crystal data  

  • C13H16ClF3N2O4S

  • M r = 388.79

  • Monoclinic, Inline graphic

  • a = 15.404 (4) Å

  • b = 9.483 (2) Å

  • c = 11.858 (3) Å

  • β = 103.464 (4)°

  • V = 1684.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.68 × 0.40 × 0.18 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.761, T max = 0.930

  • 6863 measured reflections

  • 2964 independent reflections

  • 2548 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.175

  • S = 1.11

  • 2964 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021216/wn2475sup1.cif

e-68-o1744-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021216/wn2475Isup2.hkl

e-68-o1744-Isup2.hkl (142.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021216/wn2475Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812021216/wn2475Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 0.97 2.50 3.267 (5) 136
C3—H3A⋯O4ii 0.97 2.50 3.352 (6) 146
C13—H13C⋯O2iii 0.96 2.57 3.331 (6) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Program of the Education Department of Zhejiang Province of China (grant No. Y200803060) for financial support.

supplementary crystallographic information

Comment

Pyrethroids have a high potential for biological activity with low toxicity and good environmental compatibility. They have been widely used in making pesticides (Chen & Yu, 1991; Sun et al., 2008). In a continuation of our studies of the biological activities of pyrethroids, we have obtained a colourless crystalline compound, whose structure has been confirmed by single-crystal X-ray diffraction. The crystal structures of two similar compounds have already been published (Sun, Shen, Rao et al., 2006; Sun, Shen, Zheng et al., 2006).

The molecular structure of the title compound is illustrated in Fig. 1. Atoms N1, C2, C3, N2 and C1 are approximately planar, the largest deviation from this plane being 0.025 (3) Å for atom N1. The cyclopropane ring (C5—C7) forms dihedral angles of 89.49 (22) ° and 64.07 (21) ° with the least-squares planes of the C8, C9, C6 grouping and the imidazolidine ring, respectively. In the crystal structure, intermolecular C—H···O hydrogen bonds are observed. A short intermolecular contact of O3···C3 = 3.02 Å is present.

Experimental

The title compound was synthesized according to the published procedure (Sun et al., 2008). A solution of the compound in ethanol was concentrated gradually at room temperature to afford colourless blocks.

Refinement

H atoms were included in calculated positions and refined using a riding model. Csp2—H = 0.93 Å, Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97 Å and Cmethine—H = 0.98 Å. Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, shown with 30% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A portion of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C13H16ClF3N2O4S F(000) = 800
Mr = 388.79 Dx = 1.533 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3411 reflections
a = 15.404 (4) Å θ = 2.7–26.7°
b = 9.483 (2) Å µ = 0.40 mm1
c = 11.858 (3) Å T = 298 K
β = 103.464 (4)° Block, colourless
V = 1684.5 (8) Å3 0.68 × 0.40 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2964 independent reflections
Radiation source: fine-focus sealed tube 2548 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
φ and ω scans θmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −18→14
Tmin = 0.761, Tmax = 0.930 k = −8→11
6863 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0729P)2 + 2.4194P] where P = (Fo2 + 2Fc2)/3
2964 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.0849 (3) 1.1070 (3) 0.3133 (2) 0.1095 (13)
F2 0.0338 (3) 1.2094 (4) 0.4425 (3) 0.1146 (13)
F3 0.1607 (3) 1.2571 (3) 0.4218 (4) 0.1126 (12)
O3 0.5270 (2) 0.1855 (3) 0.3889 (3) 0.0683 (9)
O4 0.4640 (3) 0.1833 (3) 0.5579 (3) 0.0778 (10)
C13 0.3639 (4) 0.1076 (5) 0.3604 (6) 0.0918 (18)
H13A 0.3575 0.1240 0.2790 0.138*
H13B 0.3101 0.1352 0.3822 0.138*
H13C 0.3749 0.0092 0.3768 0.138*
S 0.45301 (6) 0.20590 (10) 0.43865 (8) 0.0461 (3)
Cl1 0.16342 (14) 1.09317 (14) 0.64639 (11) 0.1095 (7)
O1 0.3400 (2) 0.4131 (3) 0.5463 (2) 0.0605 (8)
O2 0.2822 (2) 0.7813 (3) 0.3499 (2) 0.0585 (7)
N2 0.34790 (19) 0.5737 (3) 0.4009 (2) 0.0407 (7)
N1 0.4231 (2) 0.3728 (3) 0.4092 (3) 0.0450 (7)
C7 0.1933 (2) 0.7923 (3) 0.5495 (3) 0.0385 (7)
H7 0.1997 0.8140 0.6319 0.046*
C10 0.1603 (2) 0.9097 (4) 0.4727 (3) 0.0418 (8)
H10 0.1507 0.8925 0.3935 0.050*
C6 0.1633 (2) 0.6421 (4) 0.5170 (3) 0.0399 (8)
C4 0.2957 (2) 0.6873 (4) 0.4208 (3) 0.0414 (8)
C1 0.3662 (2) 0.4485 (4) 0.4631 (3) 0.0396 (8)
C8 0.1030 (3) 0.6147 (4) 0.3983 (3) 0.0543 (10)
H8A 0.1197 0.6759 0.3424 0.081*
H8B 0.0421 0.6326 0.4007 0.081*
H8C 0.1091 0.5183 0.3767 0.081*
C5 0.2599 (2) 0.6822 (3) 0.5266 (3) 0.0378 (7)
H5 0.3018 0.6469 0.5961 0.045*
C12 0.1041 (3) 1.1499 (4) 0.4206 (4) 0.0608 (11)
C3 0.3890 (3) 0.5794 (4) 0.3006 (3) 0.0505 (9)
H3A 0.4298 0.6584 0.3072 0.061*
H3B 0.3437 0.5882 0.2288 0.061*
C11 0.1428 (3) 1.0371 (4) 0.5035 (3) 0.0492 (9)
C2 0.4380 (3) 0.4417 (5) 0.3047 (4) 0.0604 (11)
H2A 0.4140 0.3856 0.2362 0.072*
H2B 0.5012 0.4573 0.3107 0.072*
C9 0.1443 (3) 0.5501 (4) 0.6126 (4) 0.0527 (9)
H9A 0.0815 0.5302 0.5973 0.079*
H9B 0.1624 0.5983 0.6855 0.079*
H9C 0.1768 0.4633 0.6158 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.183 (4) 0.078 (2) 0.0565 (17) 0.059 (2) 0.0057 (19) 0.0025 (14)
F2 0.117 (3) 0.110 (3) 0.131 (3) 0.074 (2) 0.059 (2) 0.031 (2)
F3 0.130 (3) 0.0571 (18) 0.151 (3) 0.0027 (18) 0.032 (2) 0.032 (2)
O3 0.0670 (19) 0.070 (2) 0.078 (2) 0.0244 (15) 0.0374 (16) 0.0059 (15)
O4 0.119 (3) 0.067 (2) 0.0551 (18) 0.0320 (19) 0.0358 (18) 0.0181 (15)
C13 0.081 (4) 0.057 (3) 0.132 (5) −0.011 (3) 0.014 (3) −0.020 (3)
S 0.0538 (6) 0.0429 (5) 0.0461 (5) 0.0096 (4) 0.0209 (4) 0.0010 (4)
Cl1 0.2056 (19) 0.0635 (8) 0.0556 (8) 0.0415 (9) 0.0228 (9) −0.0150 (6)
O1 0.087 (2) 0.0494 (15) 0.0611 (17) 0.0175 (14) 0.0496 (16) 0.0161 (13)
O2 0.0729 (18) 0.0535 (16) 0.0566 (16) 0.0195 (13) 0.0301 (14) 0.0212 (13)
N2 0.0455 (15) 0.0409 (16) 0.0417 (16) 0.0047 (12) 0.0223 (13) 0.0068 (12)
N1 0.0596 (18) 0.0421 (16) 0.0403 (16) 0.0084 (14) 0.0258 (14) 0.0034 (13)
C7 0.0461 (18) 0.0357 (17) 0.0349 (17) 0.0016 (14) 0.0119 (14) −0.0058 (14)
C10 0.0476 (19) 0.0396 (18) 0.0400 (18) 0.0045 (15) 0.0137 (15) −0.0037 (15)
C6 0.0441 (18) 0.0354 (17) 0.0434 (19) 0.0008 (14) 0.0162 (15) −0.0036 (14)
C4 0.0396 (18) 0.0410 (19) 0.0446 (19) 0.0029 (14) 0.0118 (15) 0.0066 (15)
C1 0.0443 (18) 0.0407 (18) 0.0377 (18) 0.0016 (14) 0.0175 (14) −0.0009 (14)
C8 0.056 (2) 0.050 (2) 0.055 (2) −0.0069 (18) 0.0086 (18) −0.0113 (18)
C5 0.0428 (18) 0.0356 (17) 0.0359 (17) 0.0056 (14) 0.0107 (14) −0.0008 (13)
C12 0.075 (3) 0.045 (2) 0.066 (3) 0.019 (2) 0.024 (2) −0.002 (2)
C3 0.061 (2) 0.057 (2) 0.043 (2) 0.0081 (18) 0.0295 (18) 0.0089 (17)
C11 0.062 (2) 0.041 (2) 0.048 (2) 0.0057 (17) 0.0191 (18) −0.0066 (16)
C2 0.072 (3) 0.069 (3) 0.050 (2) 0.023 (2) 0.036 (2) 0.018 (2)
C9 0.061 (2) 0.047 (2) 0.057 (2) −0.0048 (18) 0.0284 (19) −0.0010 (18)

Geometric parameters (Å, º)

F1—C12 1.303 (5) C7—H7 0.9800
F2—C12 1.300 (5) C10—C11 1.308 (5)
F3—C12 1.337 (6) C10—H10 0.9300
O3—S 1.414 (3) C6—C9 1.512 (5)
O4—S 1.401 (3) C6—C5 1.515 (5)
C13—S 1.738 (5) C6—C8 1.517 (5)
C13—H13A 0.9600 C4—C5 1.484 (5)
C13—H13B 0.9600 C8—H8A 0.9600
C13—H13C 0.9600 C8—H8B 0.9600
S—N1 1.663 (3) C8—H8C 0.9600
Cl1—C11 1.734 (4) C5—H5 0.9800
O1—C1 1.197 (4) C12—C11 1.481 (6)
O2—C4 1.210 (4) C3—C2 1.503 (6)
N2—C1 1.392 (4) C3—H3A 0.9700
N2—C4 1.397 (4) C3—H3B 0.9700
N2—C3 1.472 (4) C2—H2A 0.9700
N1—C1 1.397 (4) C2—H2B 0.9700
N1—C2 1.465 (5) C9—H9A 0.9600
C7—C10 1.453 (5) C9—H9B 0.9600
C7—C6 1.520 (5) C9—H9C 0.9600
C7—C5 1.532 (4)
S—C13—H13A 109.5 C6—C8—H8A 109.5
S—C13—H13B 109.5 C6—C8—H8B 109.5
H13A—C13—H13B 109.5 H8A—C8—H8B 109.5
S—C13—H13C 109.5 C6—C8—H8C 109.5
H13A—C13—H13C 109.5 H8A—C8—H8C 109.5
H13B—C13—H13C 109.5 H8B—C8—H8C 109.5
O4—S—O3 118.7 (2) C4—C5—C6 119.8 (3)
O4—S—N1 108.67 (17) C4—C5—C7 121.6 (3)
O3—S—N1 104.69 (17) C6—C5—C7 59.8 (2)
O4—S—C13 110.6 (3) C4—C5—H5 114.9
O3—S—C13 108.5 (3) C6—C5—H5 114.9
N1—S—C13 104.6 (2) C7—C5—H5 114.9
C1—N2—C4 128.4 (3) F2—C12—F1 108.7 (4)
C1—N2—C3 112.8 (3) F2—C12—F3 103.9 (4)
C4—N2—C3 118.8 (3) F1—C12—F3 104.3 (4)
C1—N1—C2 113.3 (3) F2—C12—C11 114.0 (4)
C1—N1—S 124.4 (2) F1—C12—C11 112.8 (3)
C2—N1—S 120.8 (2) F3—C12—C11 112.4 (4)
C10—C7—C6 121.2 (3) N2—C3—C2 104.4 (3)
C10—C7—C5 124.2 (3) N2—C3—H3A 110.9
C6—C7—C5 59.5 (2) C2—C3—H3A 110.9
C10—C7—H7 113.8 N2—C3—H3B 110.9
C6—C7—H7 113.8 C2—C3—H3B 110.9
C5—C7—H7 113.8 H3A—C3—H3B 108.9
C11—C10—C7 126.7 (3) C10—C11—C12 124.0 (4)
C11—C10—H10 116.7 C10—C11—Cl1 123.6 (3)
C7—C10—H10 116.7 C12—C11—Cl1 112.4 (3)
C9—C6—C5 116.5 (3) N1—C2—C3 103.8 (3)
C9—C6—C8 114.4 (3) N1—C2—H2A 111.0
C5—C6—C8 119.4 (3) C3—C2—H2A 111.0
C9—C6—C7 116.8 (3) N1—C2—H2B 111.0
C5—C6—C7 60.6 (2) C3—C2—H2B 111.0
C8—C6—C7 118.7 (3) H2A—C2—H2B 109.0
O2—C4—N2 117.5 (3) C6—C9—H9A 109.5
O2—C4—C5 125.1 (3) C6—C9—H9B 109.5
N2—C4—C5 117.4 (3) H9A—C9—H9B 109.5
O1—C1—N2 127.6 (3) C6—C9—H9C 109.5
O1—C1—N1 126.9 (3) H9A—C9—H9C 109.5
N2—C1—N1 105.5 (3) H9B—C9—H9C 109.5
O4—S—N1—C1 −37.1 (4) O2—C4—C5—C6 77.1 (5)
O3—S—N1—C1 −164.9 (3) N2—C4—C5—C6 −102.0 (4)
C13—S—N1—C1 81.1 (4) O2—C4—C5—C7 6.2 (5)
O4—S—N1—C2 157.4 (3) N2—C4—C5—C7 −172.8 (3)
O3—S—N1—C2 29.6 (4) C9—C6—C5—C4 141.2 (3)
C13—S—N1—C2 −84.4 (4) C8—C6—C5—C4 −3.0 (5)
C6—C7—C10—C11 144.2 (4) C7—C6—C5—C4 −111.4 (3)
C5—C7—C10—C11 −143.6 (4) C9—C6—C5—C7 −107.3 (3)
C10—C7—C6—C9 −139.2 (3) C8—C6—C5—C7 108.4 (3)
C5—C7—C6—C9 106.9 (3) C10—C7—C5—C4 −0.6 (5)
C10—C7—C6—C5 113.9 (4) C6—C7—C5—C4 108.5 (4)
C10—C7—C6—C8 4.4 (5) C10—C7—C5—C6 −109.1 (4)
C5—C7—C6—C8 −109.5 (3) C1—N2—C3—C2 −0.5 (4)
C1—N2—C4—O2 −173.8 (3) C4—N2—C3—C2 −179.1 (3)
C3—N2—C4—O2 4.6 (5) C7—C10—C11—C12 −176.2 (4)
C1—N2—C4—C5 5.4 (5) C7—C10—C11—Cl1 4.5 (6)
C3—N2—C4—C5 −176.3 (3) F2—C12—C11—C10 127.9 (5)
C4—N2—C1—O1 0.5 (6) F1—C12—C11—C10 3.4 (6)
C3—N2—C1—O1 −177.9 (4) F3—C12—C11—C10 −114.2 (5)
C4—N2—C1—N1 −178.6 (3) F2—C12—C11—Cl1 −52.7 (5)
C3—N2—C1—N1 3.0 (4) F1—C12—C11—Cl1 −177.3 (4)
C2—N1—C1—O1 176.4 (4) F3—C12—C11—Cl1 65.1 (4)
S—N1—C1—O1 10.0 (6) C1—N1—C2—C3 4.0 (5)
C2—N1—C1—N2 −4.4 (4) S—N1—C2—C3 171.0 (3)
S—N1—C1—N2 −170.8 (2) N2—C3—C2—N1 −2.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O4i 0.97 2.50 3.267 (5) 136
C3—H3A···O4ii 0.97 2.50 3.352 (6) 146
C13—H13C···O2iii 0.96 2.57 3.331 (6) 137

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2475).

References

  1. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, F. H. & Yu, Z. S. (1991). Chem. J. Chin. Univ. 12, 485–487.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, N.-B., Shen, D.-L., Rao, G.-W., Tan, C.-X. & Weng, J.-Q. (2006). Acta Cryst. E62, o2123–o2124.
  7. Sun, N. B., Shen, D. L., Tan, C. X., Weng, J. Q., Cong, S. & Fu, H. (2008). Chin. J. Org. Chem. 28, 713–717.
  8. Sun, N.-B., Shen, D.-L., Zheng, R.-H., Tan, C.-X. & Weng, J.-Q. (2006). Acta Cryst. E62, o5679–o5680.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021216/wn2475sup1.cif

e-68-o1744-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021216/wn2475Isup2.hkl

e-68-o1744-Isup2.hkl (142.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021216/wn2475Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812021216/wn2475Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES