Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1746. doi: 10.1107/S1600536812021228

2,3-Dihydro­pyrrolo­[2,1-b]quinazoline-9(1H)-thione

Azizbek O Nasrullayev a,*, Burkhon Zh Elmuradov a, Kambarali K Turgunov a, Bakhodir Tashkhodjaev a, Khusnutdin M Shakhidoyatov a
PMCID: PMC3379333  PMID: 22719531

Abstract

In the crystal, mol­ecules of the title compound, C11H10N2S, are connected by C—H⋯N inter­actions around threefold axes. Furthermore, they form stacks along the c axis showing π–π inter­actions between pyrimidine rings [centroid–centroid distance = 3.721 (1) Å]. The central ring is essentially planar with an r.m.s. deviation of 0.007 Å. The five-membered ring adopts an envelope conformation with the flap atom deviating by 0.241 (4) Å from the mean plane (r.m.s. deviation = 0.002 Å) through the other four ring atoms.

Related literature  

For the synthesis of 2,3-dihydro-1H,9H-pyrrolo­[2,1-b]quinazolin-9-one and the title compound, see: Abduraza­kov et al. (2007); Shakhidoyatov & Kadyrov (1977); Elmuradov et al. (2010). For related structures, see Elmuradov et al. (2010); Turgunov et al. (1995).graphic file with name e-68-o1746-scheme1.jpg

Experimental  

Crystal data  

  • C11H10N2S

  • M r = 202.27

  • Trigonal, Inline graphic

  • a = 26.206 (1) Å

  • c = 7.441 (2) Å

  • V = 4425.5 (12) Å3

  • Z = 18

  • Cu Kα radiation

  • μ = 2.57 mm−1

  • T = 295 K

  • 0.65 × 0.25 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.601, T max = 1.000

  • 5753 measured reflections

  • 1379 independent reflections

  • 1305 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.078

  • S = 1.06

  • 1379 reflections

  • 128 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 501 Friedel pairs

  • Flack parameter: −0.003 (19)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021228/bt5913sup1.cif

e-68-o1746-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021228/bt5913Isup2.hkl

e-68-o1746-Isup2.hkl (68.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021228/bt5913Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N1i 0.93 2.61 3.464 (4) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant Nos. FA-F7-T185 and FA-F7-T207).

supplementary crystallographic information

Comment

The title compound was synthesized by the reaction of 2,3-dihydro-1H,9H-pyrrolo[2,1-b]quinazolin-9-one with phosphorus pentasulfide (Figure 1). X-ray single-crystal diffraction study reveals that the title compound crystallizes in the space group R3c with one molecule in the asymmetric unit. The molecule is almost planar (excluding the atom C10) with r.m.s. deviation of 0.014 Å. The central (pyrimidinic) ring is planar with rms deviations of 0.007Å. Conformation of five-membered (pyrrolic) ring is envelope with deviation of the atom C10 (0.241 (4) Å) from mean plane of other four atoms (rms deviations of 0.002 Å) of the ring. In the structure weak C—H···N interactions (Table 1) are observed. The molecules are stacked along the c axis by π–π stacking interactions between pyrimidine rings [centroid-centroid distances = 3.721 (1) Å].

Experimental

2.5 g (13 mmole) of 2,3-dihydro-1H,9H-pyrrolo[2,1]quinazolin-9-one was dissolved in 15 ml m-xylene and 2.98 g (13 mmole) of phosphorus pentasulfide were added (Figure 1). Reaction mixture was boiled 2 h and allowed to cool up to room temperature. The precipitate was filtered, flushed with m-xylene (3 ml) and 10% NaOH (50 ml) was added, then the precipittate was filtered and washed with water to get neutral medium and was dried. After recrystallization from hexane 1.96 g (72%) the title compound crystals. Suitable for X-ray diffraction crystals was obtained from hexane with m.p. 138 °C

1H NMR (400 MHz, CDCl3): 8.67 (1H, dd, J=8.3, J=1.7, H-8), 7.69 (1H, td, J=8.3, J=1.7, H-6), 7.59 (1H, dd, J=8.3, J=1.2, H-5), 7.43 (1H, td, J=8.3, J=1.2, H-6), 4.47 (2H, t, J=7.5, 1-CH2), 3.25 (2H, t, J=7.9, 3-CH2), 2.28 (2H, m, 2-CH2)

Refinement

H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic)and 0.97 Å (CH2) and were refined with Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Reaction scheme

Fig. 2.

Fig. 2.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C11H10N2S Dx = 1.366 Mg m3
Mr = 202.27 Melting point: 411 K
Trigonal, R3c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: R 3 -2"c Cell parameters from 2338 reflections
a = 26.206 (1) Å θ = 3.4–66.8°
c = 7.441 (2) Å µ = 2.57 mm1
V = 4425.5 (12) Å3 T = 295 K
Z = 18 Prism, yellow
F(000) = 1908 0.65 × 0.25 × 0.20 mm

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer 1379 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1305 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
Detector resolution: 10.2576 pixels mm-1 θmax = 66.8°, θmin = 3.4°
ω scans h = −28→31
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −31→31
Tmin = 0.601, Tmax = 1.000 l = −8→8
5753 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.028P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.16 e Å3
1379 reflections Δρmin = −0.19 e Å3
128 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.00144 (11)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 501 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.003 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.89225 (2) 0.23959 (3) 0.13284 (10) 0.0588 (2)
N1 0.71400 (8) 0.21624 (8) 0.2807 (3) 0.0562 (5)
C2 0.72288 (9) 0.17396 (9) 0.2343 (3) 0.0480 (4)
N3 0.77699 (7) 0.18140 (7) 0.1857 (2) 0.0445 (4)
C4 0.82758 (8) 0.23443 (9) 0.1852 (3) 0.0451 (4)
C4A 0.81976 (9) 0.28375 (9) 0.2345 (3) 0.0477 (4)
C5 0.86723 (10) 0.34181 (10) 0.2392 (4) 0.0614 (5)
H5A 0.9050 0.3495 0.2105 0.074*
C6 0.85814 (13) 0.38726 (11) 0.2857 (5) 0.0765 (8)
H6A 0.8898 0.4256 0.2880 0.092*
C7 0.80209 (14) 0.37644 (12) 0.3296 (5) 0.0827 (9)
H7A 0.7964 0.4076 0.3604 0.099*
C8 0.75527 (11) 0.32025 (12) 0.3276 (5) 0.0746 (7)
H8A 0.7180 0.3135 0.3581 0.090*
C8A 0.76270 (10) 0.27240 (9) 0.2803 (3) 0.0528 (5)
C9 0.67738 (10) 0.11011 (10) 0.2275 (4) 0.0601 (5)
H9A 0.6436 0.1040 0.1570 0.072*
H9B 0.6642 0.0947 0.3475 0.072*
C10 0.70825 (10) 0.08040 (10) 0.1391 (4) 0.0670 (6)
H10A 0.6999 0.0450 0.2044 0.080*
H10B 0.6949 0.0697 0.0161 0.080*
C11 0.77385 (10) 0.12481 (9) 0.1437 (4) 0.0548 (5)
H11A 0.7934 0.1146 0.2356 0.066*
H11B 0.7920 0.1267 0.0283 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0415 (3) 0.0673 (4) 0.0720 (3) 0.0306 (2) 0.0040 (2) −0.0012 (3)
N1 0.0407 (8) 0.0548 (10) 0.0767 (12) 0.0265 (8) −0.0002 (8) 0.0031 (9)
C2 0.0375 (9) 0.0509 (10) 0.0541 (10) 0.0210 (8) −0.0041 (8) 0.0011 (9)
N3 0.0422 (8) 0.0457 (9) 0.0480 (8) 0.0238 (7) −0.0023 (6) 0.0014 (7)
C4 0.0420 (9) 0.0512 (11) 0.0442 (9) 0.0250 (9) −0.0033 (8) 0.0018 (8)
C4A 0.0444 (10) 0.0472 (10) 0.0541 (10) 0.0249 (8) −0.0033 (8) 0.0033 (9)
C5 0.0499 (11) 0.0504 (11) 0.0791 (14) 0.0215 (9) −0.0041 (11) 0.0013 (11)
C6 0.0686 (15) 0.0437 (12) 0.110 (2) 0.0229 (12) −0.0094 (14) −0.0012 (13)
C7 0.0838 (17) 0.0545 (13) 0.124 (3) 0.0454 (13) −0.0099 (18) −0.0084 (15)
C8 0.0615 (14) 0.0649 (14) 0.112 (2) 0.0429 (12) −0.0006 (15) −0.0018 (15)
C8A 0.0485 (11) 0.0482 (11) 0.0667 (12) 0.0279 (9) −0.0062 (10) 0.0009 (9)
C9 0.0429 (10) 0.0519 (11) 0.0752 (13) 0.0160 (9) −0.0014 (10) −0.0002 (11)
C10 0.0616 (14) 0.0464 (11) 0.0850 (16) 0.0211 (10) −0.0043 (13) −0.0053 (11)
C11 0.0601 (12) 0.0512 (11) 0.0592 (11) 0.0325 (10) −0.0004 (11) −0.0029 (12)

Geometric parameters (Å, º)

S1—C4 1.6771 (18) C6—H6A 0.9300
N1—C2 1.288 (3) C7—C8 1.366 (4)
N1—C8A 1.384 (3) C7—H7A 0.9300
C2—N3 1.380 (3) C8—C8A 1.406 (3)
C2—C9 1.493 (3) C8—H8A 0.9300
N3—C4 1.359 (3) C9—C10 1.524 (3)
N3—C11 1.477 (3) C9—H9A 0.9700
C4—C4A 1.453 (3) C9—H9B 0.9700
C4A—C5 1.404 (3) C10—C11 1.520 (3)
C4A—C8A 1.413 (3) C10—H10A 0.9700
C5—C6 1.371 (4) C10—H10B 0.9700
C5—H5A 0.9300 C11—H11A 0.9700
C6—C7 1.388 (4) C11—H11B 0.9700
C2—N1—C8A 116.55 (17) C7—C8—H8A 119.6
N1—C2—N3 124.32 (18) C8A—C8—H8A 119.6
N1—C2—C9 125.92 (19) N1—C8A—C8 118.8 (2)
N3—C2—C9 109.75 (18) N1—C8A—C4A 122.71 (18)
C4—N3—C2 123.61 (16) C8—C8A—C4A 118.5 (2)
C4—N3—C11 124.21 (16) C2—C9—C10 104.87 (19)
C2—N3—C11 112.11 (16) C2—C9—H9A 110.8
N3—C4—C4A 114.17 (16) C10—C9—H9A 110.8
N3—C4—S1 120.86 (15) C2—C9—H9B 110.8
C4A—C4—S1 124.97 (16) C10—C9—H9B 110.8
C5—C4A—C8A 119.56 (19) H9A—C9—H9B 108.8
C5—C4A—C4 121.83 (19) C11—C10—C9 106.58 (18)
C8A—C4A—C4 118.61 (18) C11—C10—H10A 110.4
C6—C5—C4A 120.2 (2) C9—C10—H10A 110.4
C6—C5—H5A 119.9 C11—C10—H10B 110.4
C4A—C5—H5A 119.9 C9—C10—H10B 110.4
C5—C6—C7 120.5 (2) H10A—C10—H10B 108.6
C5—C6—H6A 119.7 N3—C11—C10 104.32 (18)
C7—C6—H6A 119.7 N3—C11—H11A 110.9
C8—C7—C6 120.4 (2) C10—C11—H11A 110.9
C8—C7—H7A 119.8 N3—C11—H11B 110.9
C6—C7—H7A 119.8 C10—C11—H11B 110.9
C7—C8—C8A 120.9 (2) H11A—C11—H11B 108.9

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7A···N1i 0.93 2.61 3.464 (4) 153

Symmetry code: (i) −y+1, xy, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5913).

References

  1. Abdurazakov, A. Sh., Elmuradov, B. Zh., Nasrullaev, A. O., Makhmudov, S. A. & Shakhidoyatov, Kh. M. (2007). Highlights in the Evolution of Phytochemistry, Abstract book, p. 122. Cambridge: RPS Publishing.
  2. Bruker (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Elmuradov, B. Z., Turgunov, K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o1238. [DOI] [PMC free article] [PubMed]
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  6. Shakhidoyatov, Kh. M. & Kadyrov, Ch. Sh. (1977). Khim. Prir. Soedin. pp. 668–670.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Turgunov, K. K., Tashkhodjaev, B., Molchanov, L. V. & Aripov, Kh. N. (1995). Khim. Prir. Soedin. pp. 849–854.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021228/bt5913sup1.cif

e-68-o1746-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021228/bt5913Isup2.hkl

e-68-o1746-Isup2.hkl (68.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021228/bt5913Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES