Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1748. doi: 10.1107/S1600536812021009

Methyl (E)-2-[(2-nitro­phen­oxy)meth­yl]-3-phenyl­acrylate

T Anuradha a, A Devaraj b, P R Seshadri a,*, M Bakthadoss b
PMCID: PMC3379335  PMID: 22719533

Abstract

The title compound, C17H15NO5, adopts an E conformation with respect to the C=C double bond of the phenyl­acrylate unit. The phenyl ring and methyl acrylate group of the phenyl­acrylate unit are disordered over two sets of sites with site-occupancy ratios of 0.705 (5):0.295 (5) and 0.683 (3):0.317 (3), respectively. The mean plane through the benzene ring of the phenyl acrylate makes dihedral angles of 88.4 (8) (major component) and 86.7 (8)° (minor component) with the nitro­phen­oxy ring; the dihedral angle between the two components is 3.64 (6)°. Intra­molecular C—H⋯O interactions stabilise the molecular structure. In the crystal, C—H⋯O inter­actions result in a chain of mol­ecules running along the b axis.

Related literature  

For the industrial importance of methyl trans-cinnamates, see: Bhatia et al. (2007); Huang et al. (2009); Sharma (2011). For related structures, see: Anuradha et al. (2011); Wang et al. (2011). For graph-set notation, see: Bernstein et al. (1995). For background to the synthesis, see: Bakthadoss et al. (2009).graphic file with name e-68-o1748-scheme1.jpg

Experimental  

Crystal data  

  • C17H15NO5

  • M r = 313.30

  • Monoclinic, Inline graphic

  • a = 24.0511 (10) Å

  • b = 7.8521 (3) Å

  • c = 19.7403 (9) Å

  • β = 121.661 (3)°

  • V = 3173.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.971, T max = 0.981

  • 32853 measured reflections

  • 3695 independent reflections

  • 2356 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.145

  • S = 1.12

  • 3695 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021009/pv2539sup1.cif

e-68-o1748-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021009/pv2539Isup2.hkl

e-68-o1748-Isup2.hkl (177.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021009/pv2539Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O3 0.93 2.26 2.683 (5) 107
C11—H11⋯O5 0.93 2.51 3.2734 (17) 140
C2—H2⋯O3i 0.93 2.56 3.140 (4) 121
C3—H3⋯O3i 0.93 2.51 3.114 (5) 123
C4—H4⋯O2ii 0.93 2.56 3.255 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Varghese, SAIF, IIT–Madras, India, for the data collection.

supplementary crystallographic information

Comment

Methyl trans-cinnamate can inhibit both monophenolase activity and diphenolase activity of tyrosinase and thus it can be a potential compound used in antibrowning food additive (Huang et al., 2009). It is a fragrance ingredient used in many fragrances and decorative cosmetics (Bhatia et al., 2007; Sharma, 2011). In view of this industrial importance, we have prepared the title compound which is a nitrophenoxymethyl derivative of methyl trans-cinnamate and determined its crystal structure which is presented in this paper.

The title molecule adopts an E configuration with respect to the C8═C9 double bond (Fig. 1). The benzene ring (C10–C15) and methyl acrylate (C16/C17/O3/O4) group of the phenylacrylate unit are disordered over two orientations with site-occupancy ratios of 0.705 (5):0.295 (5) and 0.683 (3):0.317 (3) representing major and minor components, repectively. The mean plane through the benzene ring of the phenyl acrylate makes dihedral angles of 88.4 (8) (major component) and 86.7 (8)° (minor component) with the nitrophenoxy (C1–C6/N1/O1/O2) ring; the dihedral angle between the two components is 3.6 (6)°.

The major and minor components of the methylacrylate (C8/C16/C17/O3/O4) are essentially planar with maximum deviations for atoms O4 and O4', -0.015 (1) and 0.015 (1) Å, respectively. The central unit (C6–C8/O5) is almost equatorial to the major component of methylphenylacrylate group (C8–C17/O1/O2) whereas axial to the nitrobenzene (C1–C6/N1), making dihedral angles of 88.4 (1) and 8.1 (1)°, respectively.

The crystal structure is stabilized by intramolecular bifurcated C—H···O hydrogen bonds involving two hydrogen atoms (H2/H3) of the benzene ring (C1—C6) and O3 of the acrylate resulting in an R22(5) ring motif (Bernstein et al., 1995) and C4—H4···O2 interactions resulting in a chain of molecules running along the b-axis (Table 1 and Fig. 2).

The crystal structures of a few related compounds have been reported recently (Anuradha et al., 2011); Wang et al., 2011).

Experimental

To a stirred solution of 2-nitrophenol (0.14 g, 1 mmol) in acetonitrile (7 ml), potassium carbonate (0.35 g, 2.5 mmol) was added and stirred well for five minutes. To this solution, (Z)- methyl 2-(bromomethyl)-3-phenylacrylate (0.26 g, 1 mmol) in acetonitrile (0.5 ml) was added and allowed to stir well for 6 h. After the completion of the reaction, the reaction mixture was poured into water and extracted using ethyl acetate. The organic layer thus obtained was concentrated under reduced pressure and the residual mass thus obtained was purified by column chromatography on silica gel (Acme 100–200) using EtOAc-hexanes (1:9) to afford the title compound in 90% yield. The crystals suitable for X-ray crystallographic analysis were grown from a solution of ethylacetate by slow evaporation at room temperature.

Refinement

The benzene ring(C10 - C15) and methyl acrylate(C16/C17/O3/O4) group of the phenylacrylate unit are disordered over two orientations with site-occupancy ratio of 0.705 (5):0.295 (5) and 0.683 (3):0.317 (3) representing major and minor components repectively. The command EADP was used in SHELXL-97 (Sheldrick, 2008) to constrain the Ueq of the disordered atoms. The hydrogen atoms were placed in calculated positions with C—H = 0.93, 0.96 and 0.97 Å, for acryl, methyl and methylene H-atoms, respectively, and refined in the riding mode; the Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C non-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom - numbering scheme with 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius. The minor fractions of the disordered benzene ring and methylacrylate have been represented by broken bonds.

Fig. 2.

Fig. 2.

A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound.

Crystal data

C17H15NO5 F(000) = 1312
Mr = 313.30 Dx = 1.312 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3695 reflections
a = 24.0511 (10) Å θ = 2.2–27.7°
b = 7.8521 (3) Å µ = 0.10 mm1
c = 19.7403 (9) Å T = 293 K
β = 121.661 (3)° Block, colourless
V = 3173.1 (2) Å3 0.30 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker SMART APEXII area-detector diffractometer 3695 independent reflections
Radiation source: fine-focus sealed tube 2356 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω and φ scans θmax = 27.7°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −31→31
Tmin = 0.971, Tmax = 0.981 k = −10→10
32853 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0548P)2 + 1.2534P] where P = (Fo2 + 2Fc2)/3
3695 reflections (Δ/σ)max = 0.008
212 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.04775 (8) 0.71127 (19) −0.03978 (10) 0.0530 (4)
C2 −0.00796 (9) 0.7393 (2) −0.11206 (11) 0.0646 (5)
H2 −0.0326 0.6479 −0.1435 0.078*
C3 −0.02733 (9) 0.9032 (2) −0.13791 (12) 0.0722 (5)
H3 −0.0652 0.9239 −0.1868 0.087*
C4 0.00989 (9) 1.0359 (2) −0.09087 (11) 0.0684 (5)
H4 −0.0035 1.1470 −0.1080 0.082*
C5 0.06650 (8) 1.0086 (2) −0.01904 (10) 0.0581 (4)
H5 0.0912 1.1008 0.0115 0.070*
C6 0.08709 (7) 0.84407 (19) 0.00821 (9) 0.0494 (4)
C7 0.18319 (8) 0.9397 (2) 0.12608 (10) 0.0561 (4)
H7A 0.1617 0.9959 0.1501 0.067*
H7B 0.1897 1.0228 0.0945 0.067*
C8 0.24735 (8) 0.8703 (2) 0.18938 (11) 0.0598 (4)
C9 0.26255 (9) 0.8346 (2) 0.26281 (11) 0.0698 (5)
H9 0.3061 0.8069 0.2985 0.084*
O5 0.14319 (5) 0.80287 (13) 0.07619 (7) 0.0586 (3)
N1 0.06558 (8) 0.53526 (19) −0.01355 (12) 0.0696 (4)
O1 0.08558 (8) 0.49972 (19) 0.05526 (11) 0.1018 (6)
O2 0.05728 (10) 0.43151 (19) −0.06366 (12) 0.1139 (6)
O3 0.35656 (19) 0.8059 (6) 0.2290 (2) 0.1002 (11) 0.683 (3)
O4 0.28384 (12) 0.8651 (4) 0.1015 (2) 0.0720 (7) 0.683 (3)
C17 0.33209 (17) 0.8375 (5) 0.0840 (2) 0.0942 (9) 0.683 (3)
H17A 0.3619 0.9319 0.1028 0.141* 0.683 (3)
H17B 0.3123 0.8267 0.0274 0.141* 0.683 (3)
H17C 0.3554 0.7348 0.1095 0.141* 0.683 (3)
C16 0.30259 (19) 0.8415 (5) 0.1786 (2) 0.0616 (8) 0.683 (3)
O3' 0.2676 (4) 0.9073 (12) 0.0829 (6) 0.1002 (11) 0.317 (3)
O4' 0.3504 (4) 0.8074 (11) 0.2006 (4) 0.0720 (7) 0.317 (3)
C17' 0.3931 (4) 0.8028 (11) 0.1689 (5) 0.0942 (9) 0.317 (3)
H17D 0.3785 0.7156 0.1291 0.141* 0.317 (3)
H17E 0.4369 0.7786 0.2112 0.141* 0.317 (3)
H17F 0.3919 0.9111 0.1457 0.141* 0.317 (3)
C16' 0.2889 (5) 0.8675 (13) 0.1467 (6) 0.0616 (8) 0.317 (3)
C10 0.21965 (15) 0.8329 (3) 0.29588 (16) 0.0693 (5) 0.705 (5)
C11 0.15778 (8) 0.76028 (14) 0.24978 (8) 0.0740 (6) 0.705 (5)
H11 0.1441 0.7189 0.1992 0.089* 0.705 (5)
C12 0.11639 (8) 0.74947 (14) 0.27897 (8) 0.0868 (8) 0.705 (5)
H12 0.0750 0.7020 0.2478 0.104* 0.705 (5)
C13 0.13684 (8) 0.80956 (14) 0.35480 (8) 0.0957 (11) 0.705 (5)
H13 0.1091 0.8023 0.3743 0.115* 0.705 (5)
C14 0.19868 (8) 0.88046 (14) 0.40143 (8) 0.1047 (12) 0.705 (5)
H14 0.2124 0.9207 0.4522 0.126* 0.705 (5)
C15 0.24007 (8) 0.89128 (14) 0.37224 (8) 0.0906 (8) 0.705 (5)
H15 0.2816 0.9377 0.4038 0.109* 0.705 (5)
C10' 0.22131 (8) 0.82692 (14) 0.29177 (8) 0.0693 (5) 0.295 (5)
C11' 0.15763 (8) 0.76783 (14) 0.25774 (8) 0.0740 (6) 0.295 (5)
H11' 0.1350 0.7290 0.2054 0.089* 0.295 (5)
C12' 0.12776 (8) 0.76678 (14) 0.30186 (8) 0.0868 (8) 0.295 (5)
H12' 0.0851 0.7272 0.2791 0.104* 0.295 (5)
C13' 0.16156 (8) 0.82481 (14) 0.38001 (8) 0.0957 (11) 0.295 (5)
H13' 0.1416 0.8241 0.4095 0.115* 0.295 (5)
C14' 0.22524 (8) 0.88390 (14) 0.41404 (8) 0.1047 (12) 0.295 (5)
H14' 0.2479 0.9227 0.4663 0.126* 0.295 (5)
C15' 0.25511 (8) 0.88495 (14) 0.36992 (8) 0.0906 (8) 0.295 (5)
H15' 0.2977 0.9245 0.3927 0.109* 0.295 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0514 (9) 0.0474 (8) 0.0629 (10) −0.0054 (7) 0.0317 (8) −0.0016 (7)
C2 0.0574 (10) 0.0612 (10) 0.0651 (11) −0.0131 (8) 0.0252 (9) −0.0118 (8)
C3 0.0590 (11) 0.0702 (12) 0.0622 (11) −0.0030 (9) 0.0144 (9) 0.0014 (9)
C4 0.0630 (11) 0.0555 (9) 0.0670 (12) 0.0017 (8) 0.0206 (10) 0.0051 (8)
C5 0.0567 (10) 0.0485 (8) 0.0574 (10) −0.0040 (7) 0.0219 (8) −0.0024 (7)
C6 0.0476 (9) 0.0510 (8) 0.0501 (9) −0.0043 (6) 0.0260 (8) −0.0011 (7)
C7 0.0545 (9) 0.0500 (8) 0.0536 (9) −0.0059 (7) 0.0213 (8) −0.0018 (7)
C8 0.0514 (9) 0.0539 (9) 0.0609 (11) −0.0018 (7) 0.0204 (8) −0.0026 (8)
C9 0.0615 (11) 0.0590 (10) 0.0628 (12) 0.0052 (8) 0.0146 (9) 0.0041 (8)
O5 0.0540 (7) 0.0487 (6) 0.0561 (7) −0.0037 (5) 0.0172 (6) 0.0015 (5)
N1 0.0605 (9) 0.0495 (8) 0.0984 (13) −0.0112 (7) 0.0414 (9) −0.0019 (8)
O1 0.1010 (12) 0.0756 (10) 0.1010 (12) −0.0169 (8) 0.0338 (10) 0.0265 (9)
O2 0.1455 (16) 0.0531 (8) 0.1600 (17) −0.0084 (9) 0.0919 (14) −0.0197 (10)
O3 0.0626 (15) 0.140 (2) 0.078 (2) 0.0263 (14) 0.0233 (18) 0.008 (2)
O4 0.0476 (14) 0.0938 (16) 0.069 (2) 0.0054 (10) 0.0265 (15) 0.0008 (13)
C17 0.086 (2) 0.120 (3) 0.099 (2) −0.0060 (19) 0.0632 (18) −0.003 (2)
C16 0.049 (2) 0.0636 (17) 0.051 (3) 0.0007 (14) 0.012 (2) 0.0024 (17)
O3' 0.0626 (15) 0.140 (2) 0.078 (2) 0.0263 (14) 0.0233 (18) 0.008 (2)
O4' 0.0476 (14) 0.0938 (16) 0.069 (2) 0.0054 (10) 0.0265 (15) 0.0008 (13)
C17' 0.086 (2) 0.120 (3) 0.099 (2) −0.0060 (19) 0.0632 (18) −0.003 (2)
C16' 0.049 (2) 0.0636 (17) 0.051 (3) 0.0007 (14) 0.012 (2) 0.0024 (17)
C10 0.0848 (14) 0.0554 (10) 0.0554 (11) 0.0092 (9) 0.0284 (10) 0.0094 (8)
C11 0.0916 (15) 0.0683 (12) 0.0651 (12) 0.0022 (10) 0.0432 (12) 0.0089 (9)
C12 0.106 (2) 0.0881 (16) 0.0731 (18) 0.0032 (14) 0.0516 (17) 0.0131 (14)
C13 0.127 (3) 0.0971 (19) 0.079 (2) 0.009 (2) 0.065 (2) 0.0098 (17)
C14 0.136 (4) 0.106 (2) 0.084 (2) −0.004 (2) 0.066 (3) −0.0063 (16)
C15 0.109 (2) 0.0903 (17) 0.0643 (13) −0.0018 (14) 0.0402 (15) −0.0044 (12)
C10' 0.0848 (14) 0.0554 (10) 0.0554 (11) 0.0092 (9) 0.0284 (10) 0.0094 (8)
C11' 0.0916 (15) 0.0683 (12) 0.0651 (12) 0.0022 (10) 0.0432 (12) 0.0089 (9)
C12' 0.106 (2) 0.0881 (16) 0.0731 (18) 0.0032 (14) 0.0516 (17) 0.0131 (14)
C13' 0.127 (3) 0.0971 (19) 0.079 (2) 0.009 (2) 0.065 (2) 0.0098 (17)
C14' 0.136 (4) 0.106 (2) 0.084 (2) −0.004 (2) 0.066 (3) −0.0063 (16)
C15' 0.109 (2) 0.0903 (17) 0.0643 (13) −0.0018 (14) 0.0402 (15) −0.0044 (12)

Geometric parameters (Å, º)

C1—C2 1.369 (2) C17—H17C 0.9600
C1—C6 1.392 (2) O3'—C16' 1.126 (14)
C1—N1 1.459 (2) O4'—C16' 1.375 (14)
C2—C3 1.372 (3) O4'—C17' 1.456 (9)
C2—H2 0.9300 C17'—H17D 0.9600
C3—C4 1.370 (2) C17'—H17E 0.9600
C3—H3 0.9300 C17'—H17F 0.9600
C4—C5 1.372 (2) C10—C15 1.395 (3)
C4—H4 0.9300 C10—C11 1.395 (4)
C5—C6 1.387 (2) C11—C12 1.3900
C5—H5 0.9300 C11—H11 0.9300
C6—O5 1.3510 (18) C12—C13 1.3900
C7—O5 1.4334 (18) C12—H12 0.9300
C7—C8 1.489 (2) C13—C14 1.3900
C7—H7A 0.9700 C13—H13 0.9300
C7—H7B 0.9700 C14—C15 1.3900
C8—C9 1.325 (3) C14—H14 0.9300
C8—C16 1.469 (5) C15—H15 0.9300
C8—C16' 1.610 (13) C10'—C11' 1.3900
C9—C10' 1.382 (3) C10'—C15' 1.3900
C9—C10 1.483 (4) C11'—C12' 1.3900
C9—H9 0.9300 C11'—H11' 0.9300
N1—O1 1.212 (2) C12'—C13' 1.3900
N1—O2 1.214 (2) C12'—H12' 0.9300
O3—C16 1.182 (5) C13'—C14' 1.3900
O4—C16 1.353 (4) C13'—H13' 0.9300
O4—C17 1.392 (4) C14'—C15' 1.3900
C17—H17A 0.9600 C14'—H14' 0.9300
C17—H17B 0.9600 C15'—H15' 0.9300
C2—C1—C6 122.17 (15) O4'—C17'—H17E 109.5
C2—C1—N1 117.84 (15) H17D—C17'—H17E 109.5
C6—C1—N1 119.98 (15) O4'—C17'—H17F 109.5
C1—C2—C3 119.61 (16) H17D—C17'—H17F 109.5
C1—C2—H2 120.2 H17E—C17'—H17F 109.5
C3—C2—H2 120.2 O3'—C16'—O4' 129.3 (12)
C4—C3—C2 119.18 (17) O3'—C16'—C8 122.6 (9)
C4—C3—H3 120.4 O4'—C16'—C8 108.1 (7)
C2—C3—H3 120.4 C15—C10—C11 119.3 (3)
C3—C4—C5 121.49 (17) C15—C10—C9 122.8 (2)
C3—C4—H4 119.3 C11—C10—C9 117.9 (2)
C5—C4—H4 119.3 C12—C11—C10 120.36 (15)
C4—C5—C6 120.32 (15) C12—C11—H11 119.8
C4—C5—H5 119.8 C10—C11—H11 119.8
C6—C5—H5 119.8 C11—C12—C13 120.0
O5—C6—C5 125.12 (14) C11—C12—H12 120.0
O5—C6—C1 117.65 (14) C13—C12—H12 120.0
C5—C6—C1 117.19 (14) C12—C13—C14 120.0
O5—C7—C8 109.18 (13) C12—C13—H13 120.0
O5—C7—H7A 109.8 C14—C13—H13 120.0
C8—C7—H7A 109.8 C13—C14—C15 120.0
O5—C7—H7B 109.8 C13—C14—H14 120.0
C8—C7—H7B 109.8 C15—C14—H14 120.0
H7A—C7—H7B 108.3 C14—C15—C10 120.35 (15)
C9—C8—C16 112.0 (2) C14—C15—H15 119.8
C9—C8—C7 124.38 (17) C10—C15—H15 119.8
C16—C8—C7 123.5 (2) C9—C10'—C11' 131.51 (10)
C9—C8—C16' 132.8 (4) C9—C10'—C15' 108.43 (10)
C7—C8—C16' 102.7 (4) C11'—C10'—C15' 120.0
C8—C9—C10' 128.02 (17) C12'—C11'—C10' 120.0
C8—C9—C10 128.86 (19) C12'—C11'—H11' 120.0
C8—C9—H9 115.6 C10'—C11'—H11' 120.0
C10'—C9—H9 116.4 C11'—C12'—C13' 120.0
C10—C9—H9 115.6 C11'—C12'—H12' 120.0
C6—O5—C7 117.59 (12) C13'—C12'—H12' 120.0
O1—N1—O2 123.87 (18) C14'—C13'—C12' 120.0
O1—N1—C1 119.05 (16) C14'—C13'—H13' 120.0
O2—N1—C1 117.03 (18) C12'—C13'—H13' 120.0
C16—O4—C17 115.4 (3) C13'—C14'—C15' 120.0
O3—C16—O4 123.3 (4) C13'—C14'—H14' 120.0
O3—C16—C8 126.3 (3) C15'—C14'—H14' 120.0
O4—C16—C8 110.4 (3) C10'—C15'—C14' 120.0
C16'—O4'—C17' 113.0 (8) C10'—C15'—H15' 120.0
O4'—C17'—H17D 109.5 C14'—C15'—H15' 120.0
C6—C1—C2—C3 −1.9 (3) C16'—C8—C16—O4 −9.8 (12)
N1—C1—C2—C3 178.29 (17) C17'—O4'—C16'—O3' 2.5 (17)
C1—C2—C3—C4 0.4 (3) C17'—O4'—C16'—C8 −178.7 (6)
C2—C3—C4—C5 0.9 (3) C9—C8—C16'—O3' −177.7 (8)
C3—C4—C5—C6 −0.8 (3) C16—C8—C16'—O3' 176 (2)
C4—C5—C6—O5 177.10 (16) C7—C8—C16'—O3' −2.1 (12)
C4—C5—C6—C1 −0.6 (3) C9—C8—C16'—O4' 3.4 (11)
C2—C1—C6—O5 −175.93 (15) C16—C8—C16'—O4' −2.5 (9)
N1—C1—C6—O5 3.9 (2) C7—C8—C16'—O4' 179.0 (6)
C2—C1—C6—C5 2.0 (2) C8—C9—C10—C15 −141.3 (2)
N1—C1—C6—C5 −178.22 (15) C10'—C9—C10—C15 148 (3)
O5—C7—C8—C9 −97.96 (19) C8—C9—C10—C11 42.5 (3)
O5—C7—C8—C16 85.3 (3) C10'—C9—C10—C11 −28 (3)
O5—C7—C8—C16' 85.9 (4) C15—C10—C11—C12 1.3 (3)
C16—C8—C9—C10' −171.5 (2) C9—C10—C11—C12 177.64 (13)
C7—C8—C9—C10' 11.4 (3) C10—C11—C12—C13 −0.67 (14)
C16'—C8—C9—C10' −173.8 (5) C11—C12—C13—C14 0.0
C16—C8—C9—C10 −174.4 (2) C12—C13—C14—C15 0.0
C7—C8—C9—C10 8.5 (3) C13—C14—C15—C10 0.66 (14)
C16'—C8—C9—C10 −176.7 (5) C11—C10—C15—C14 −1.3 (3)
C5—C6—O5—C7 3.1 (2) C9—C10—C15—C14 −177.45 (14)
C1—C6—O5—C7 −179.15 (14) C8—C9—C10'—C11' 37.6 (2)
C8—C7—O5—C6 −169.94 (14) C10—C9—C10'—C11' 149 (3)
C2—C1—N1—O1 −137.99 (18) C8—C9—C10'—C15' −145.33 (17)
C6—C1—N1—O1 42.2 (2) C10—C9—C10'—C15' −34 (3)
C2—C1—N1—O2 39.7 (2) C9—C10'—C11'—C12' 176.81 (12)
C6—C1—N1—O2 −140.11 (18) C15'—C10'—C11'—C12' 0.0
C17—O4—C16—O3 2.7 (6) C10'—C11'—C12'—C13' 0.0
C17—O4—C16—C8 −178.7 (3) C11'—C12'—C13'—C14' 0.0
C9—C8—C16—O3 −6.5 (5) C12'—C13'—C14'—C15' 0.0
C7—C8—C16—O3 170.6 (4) C9—C10'—C15'—C14' −177.49 (9)
C16'—C8—C16—O3 168.8 (17) C11'—C10'—C15'—C14' 0.0
C9—C8—C16—O4 174.8 (2) C13'—C14'—C15'—C10' 0.0
C7—C8—C16—O4 −8.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···O3 0.93 2.26 2.683 (5) 107
C11—H11···O5 0.93 2.51 3.2734 (17) 140
C2—H2···O3i 0.93 2.56 3.140 (4) 121
C3—H3···O3i 0.93 2.51 3.114 (5) 123
C4—H4···O2ii 0.93 2.56 3.255 (2) 132

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2539).

References

  1. Anuradha, T., Sivakumar, G., Seshadri, P. R. & Bakthadoss, M. (2011). Acta Cryst. E67, o3322. [DOI] [PMC free article] [PubMed]
  2. Bakthadoss, M., Sivakumar, G. & Kannan, D. (2009). Org. Lett. 11, 4466–4469. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bhatia, S. P., Wellington, G. A., Cocchiara, J., Lalko, J., Letizia, C. S. & Api, A. M. (2007). J. Food Chem. Toxicol. 45, S113–S119. [DOI] [PubMed]
  5. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Huang, Q. S., Zhu, Y. J., Li, Y. L., Zhuang, J. X., Lezhang, C., Zhou, J. J., Li, W. G. & Chen, Q. X. (2009). J. Agric. Food Chem. 57, 2565–2569. [DOI] [PubMed]
  8. Sharma, P. (2011). J. Chem. Pharm. Res. 3, 403–423.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021009/pv2539sup1.cif

e-68-o1748-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021009/pv2539Isup2.hkl

e-68-o1748-Isup2.hkl (177.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021009/pv2539Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES