Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1753–o1754. doi: 10.1107/S1600536812020818

Quetiapine N-oxide–fumaric acid (2/1)

Jin Shen a, Jing-Jing Qian a, Su-Xiang Wu a, Jian-Ming Gu b, Xiu-Rong Hu b,*
PMCID: PMC3379340  PMID: 22719538

Abstract

The title compound (systematic name: 2-{2-[4-(dibenzo[b,f][1,4]thia­zepin-11-yl)piperazin-1-yl 1-oxide]eth­oxy}ethanol–fumaric acid (2/1)), C21H25N3O3S·0.5C4H4O4, is one of the oxidation products of quetiapine hemifumaric acid. In the tricyclic fragment, the central thia­zepine ring displays a boat conformation and the benzene rings are inclined to each other at a dihedral angle of 72.0 (2)°. The piperazine ring adopts a chair conformation with its eth­oxy­ethanol side chain oriented equatorially. In addition to the main mol­ecule, the asymmetric unit contains one-half mol­ecule of fumaric acid, the complete mol­ecule being generated by inversion symmetry. In the crystal, O—H⋯O hydrogen bonds link the components into corrugated layers parallel to bc plane.

Related literature  

For the identification, isolation, synthesis and characterization of quetiapine N-oxide, see: Mittapelli et al. (2010). For quanti­tative determination of quetiapine impurities, degradation products in pharmaceutical dosage form or in bulk, tablets, and in human plasma, see: Trivedi & Patel (2011); Belal et al. (2008). For the use of quetiapine as an anti­psychotic drug, see: Lieberman (1996). For the crystal structure of quetiapine hemifumarate, see: Ravikumar & Sridhar (2005).graphic file with name e-68-o1753-scheme1.jpg

Experimental  

Crystal data  

  • C21H25N3O3S·0.5C4H4O4

  • M r = 457.54

  • Monoclinic, Inline graphic

  • a = 13.1299 (9) Å

  • b = 12.5047 (8) Å

  • c = 13.9950 (9) Å

  • β = 101.59 (2)°

  • V = 2250.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.27 × 0.25 × 0.10 mm

Data collection  

  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.947, T max = 0.982

  • 17003 measured reflections

  • 3970 independent reflections

  • 2453 reflections with I > 2σ(I)

  • R int = 0.069

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.193

  • S = 1.00

  • 3970 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020818/cv5294sup1.cif

e-68-o1753-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020818/cv5294Isup2.hkl

e-68-o1753-Isup2.hkl (190.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H401⋯O1 0.81 1.62 2.394 (6) 157
O3—H301⋯O1i 0.82 1.90 2.691 (4) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was supported by Zhejiang Provincial Natural Science Foundation of China (grant No. J200801).

supplementary crystallographic information

Comment

Quetiapine N-oxide hemifumarate is one of the oxidation or degradation products of quetiapine hemifumarate (Mittapelli et al., 2010; Trivedi et al., 2011 & Belal et al., 2008). Quetiapine is one of the atypical antipsychotic licensed for the treatment of schizophrenia (Lieberman, 1996) or manic episodes associated with bipolar disorder. In the present study, we report the crystal structure of quetiapine N-oxide hemifumarate, (I), recrystallized from ethanol.

In the crystal structure of (I) (Fig.1), the asymmetric unit consists of one quetiapine N-oxide molecule and one-half of fumarate molecule; the latter one is situated on inversion center. The oxidized N atom is established as N3. The N—C bonds at N3 are lengthened [mean value 1.504 (5) Å compared to 1.427 (5) Å for N2], as would be expected for an oxidized system. The values of bond length for N3—O1 is 1.388 (4) Å. Consequently, N3 shows quaternary character in a tetrahedral configuration, with bond angles ranging from 108.5 (3)° to 110.3 (3)°.

The conformation of the title compound is similar to that of quetiapine hemifumarate (Ravikumar et al., 2005). The conformation of the central thiazepine ring in the (6,7,6)-tricyclic ring system can be described as a boat, with the atoms common to the benzene rings (C2, C7, C8 and C13) as the basal plane, the S atom as the bow and the N1=C1 bridge as the stern. The bow angle is 50.0 (2)° and the stern angle is 41.7 (2)°. This enables the dibenzothiazepine ring skeleton to form a flattened V-shaped conformation. The dihedral angle between the two benzene rings is 72.0 (2)°. The piperazine ring adopts a chair conformation. The thiazepine nucleus can be viewed as being in an equatorial orientation to the piperazine ring. The ethoxyethanol side chain at the oxidized N-atom site of the piperazine ring occupies an equatorial orientation and is in a folded conformation.

In the crystal structure, intermolecular hydrogen bonds O—H···O (Table 1) link all moieties into corrugated layers parallel to bc plane.

Experimental

The crude product synthesized by reacting quetiapine hemifumarate with hydrogen peroxideis was supplied by Zhejiang Supor Pharmaceuticals Co., Ltd. It was recrystallized from ethanol solution, giving colourless crystals of (I) suitable for X-ray diffraction.

Refinement

The H atoms were placed in calculated positions [O—H 0.82 Å; C—H 0.93–0.97 Å] and refinded as riding, with Uiso(H) = 1.2–1.5Ueq (carrier atom).

Figures

Fig. 1.

Fig. 1.

View of (I) showing atom-labelling scheme and 40% probability displacement ellipsoids. H atoms are shown as small circles of arbitary radii. Dashed line denotes hydrogen bond.

Crystal data

C21H25N3O3S·0.5C4H4O4 F(000) = 968
Mr = 457.54 Dx = 1.350 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 10875 reflections
a = 13.1299 (9) Å θ = 3.1–27.5°
b = 12.5047 (8) Å µ = 0.18 mm1
c = 13.9950 (9) Å T = 296 K
β = 101.59 (2)° Platelet, colourless
V = 2250.9 (3) Å3 0.27 × 0.25 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer 3970 independent reflections
Radiation source: rolling anode 2453 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.069
Detector resolution: 10.00 pixels mm-1 θmax = 25.0°, θmin = 3.1°
ω scans h = −15→15
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −14→14
Tmin = 0.947, Tmax = 0.982 l = −16→16
17003 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070 H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.0701P)2 + 3.2854P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3970 reflections Δρmax = 0.37 e Å3
291 parameters Δρmin = −0.39 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0142 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4958 (3) 0.6665 (3) 0.5761 (3) 0.0441 (9)
C2 0.6017 (3) 0.6567 (3) 0.5537 (3) 0.0433 (9)
C3 0.6156 (3) 0.6002 (3) 0.4723 (3) 0.0490 (10)
H3 0.5591 0.5665 0.4332 0.059*
C4 0.7121 (4) 0.5933 (3) 0.4486 (3) 0.0586 (11)
H4 0.7205 0.5554 0.3936 0.070*
C5 0.7957 (4) 0.6424 (4) 0.5060 (4) 0.0688 (13)
H5 0.8601 0.6407 0.4880 0.083*
C6 0.7850 (4) 0.6941 (4) 0.5900 (4) 0.0648 (12)
H6 0.8430 0.7235 0.6306 0.078*
C7 0.6881 (3) 0.7027 (3) 0.6146 (3) 0.0486 (10)
C8 0.6330 (3) 0.6545 (3) 0.7814 (3) 0.0522 (10)
C9 0.6911 (4) 0.6175 (4) 0.8694 (3) 0.0683 (13)
H9 0.7536 0.6507 0.8964 0.082*
C10 0.6572 (4) 0.5327 (4) 0.9169 (3) 0.0775 (15)
H10 0.6963 0.5090 0.9760 0.093*
C11 0.5653 (4) 0.4833 (4) 0.8767 (3) 0.0718 (14)
H11 0.5429 0.4249 0.9082 0.086*
C12 0.5060 (4) 0.5190 (3) 0.7908 (3) 0.0564 (11)
H12 0.4430 0.4858 0.7655 0.068*
C13 0.5391 (3) 0.6045 (3) 0.7405 (3) 0.0477 (10)
C14 0.4310 (3) 0.7560 (3) 0.4149 (3) 0.0501 (10)
H14A 0.5038 0.7567 0.4103 0.060*
H14B 0.4092 0.8292 0.4217 0.060*
C15 0.3672 (3) 0.7076 (3) 0.3242 (3) 0.0519 (10)
H15A 0.3912 0.6354 0.3162 0.062*
H15B 0.3760 0.7491 0.2679 0.062*
C16 0.2418 (3) 0.6465 (3) 0.4204 (3) 0.0472 (10)
H16A 0.2592 0.5718 0.4142 0.057*
H16B 0.1697 0.6503 0.4269 0.057*
C17 0.3100 (3) 0.6920 (3) 0.5109 (3) 0.0491 (10)
H17A 0.2876 0.7641 0.5220 0.059*
H17B 0.3037 0.6487 0.5670 0.059*
C18 0.1943 (3) 0.6514 (4) 0.2394 (3) 0.0634 (12)
H18A 0.2070 0.6898 0.1827 0.076*
H18B 0.2207 0.5793 0.2364 0.076*
C19 0.0792 (4) 0.6461 (4) 0.2346 (3) 0.0675 (13)
H19A 0.0563 0.7106 0.2625 0.081*
H19B 0.0431 0.6413 0.1671 0.081*
C21 −0.0675 (4) 0.4476 (4) 0.3412 (4) 0.0770 (15)
H21A −0.0322 0.3870 0.3192 0.092*
H21B −0.0360 0.4607 0.4090 0.092*
C22 0.0380 (8) 0.8697 (5) 0.4497 (6) 0.119 (3)
C23 −0.0191 (6) 0.9488 (5) 0.4871 (6) 0.119 (2)
H23 −0.0859 0.9320 0.4952 0.142*
C20 −0.0523 (3) 0.5435 (4) 0.2823 (4) 0.0687 (13)
H20A −0.0884 0.5340 0.2152 0.082*
H20B −0.0802 0.6065 0.3084 0.082*
N1 0.4694 (2) 0.6414 (3) 0.6578 (2) 0.0464 (8)
N2 0.4178 (2) 0.6936 (3) 0.4998 (2) 0.0474 (8)
N3 0.2541 (2) 0.7051 (2) 0.3299 (2) 0.0464 (8)
O1 0.2203 (2) 0.8100 (2) 0.3328 (2) 0.0617 (8)
O2 0.0553 (2) 0.5560 (2) 0.2866 (2) 0.0664 (9)
O3 −0.1721 (3) 0.4219 (3) 0.3344 (3) 0.0910 (12)
H301 −0.1962 0.3992 0.2796 0.136*
O4 0.1258 (4) 0.8974 (4) 0.4401 (4) 0.1291 (18)
H401 0.1599 0.8556 0.4147 0.194*
O5 0.0062 (6) 0.7872 (6) 0.4257 (6) 0.195 (3)
S1 0.67581 (9) 0.76727 (9) 0.72389 (9) 0.0615 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.049 (2) 0.039 (2) 0.044 (2) −0.0020 (17) 0.0103 (18) −0.0027 (17)
C2 0.048 (2) 0.038 (2) 0.045 (2) 0.0006 (17) 0.0131 (18) 0.0029 (17)
C3 0.055 (3) 0.045 (2) 0.048 (2) 0.0017 (19) 0.0126 (19) 0.0013 (19)
C4 0.068 (3) 0.053 (3) 0.059 (3) 0.015 (2) 0.022 (2) 0.011 (2)
C5 0.055 (3) 0.081 (3) 0.075 (3) 0.015 (3) 0.025 (2) 0.012 (3)
C6 0.049 (3) 0.068 (3) 0.076 (3) −0.003 (2) 0.011 (2) 0.004 (3)
C7 0.047 (2) 0.046 (2) 0.052 (2) −0.0020 (18) 0.0093 (18) −0.0001 (18)
C8 0.058 (3) 0.048 (2) 0.050 (2) 0.004 (2) 0.008 (2) −0.0079 (19)
C9 0.069 (3) 0.069 (3) 0.058 (3) 0.014 (2) −0.008 (2) −0.010 (2)
C10 0.100 (4) 0.073 (3) 0.052 (3) 0.024 (3) −0.003 (3) 0.008 (3)
C11 0.102 (4) 0.059 (3) 0.053 (3) 0.013 (3) 0.012 (3) 0.009 (2)
C12 0.070 (3) 0.050 (2) 0.049 (2) 0.000 (2) 0.011 (2) 0.002 (2)
C13 0.054 (3) 0.047 (2) 0.042 (2) 0.0098 (19) 0.0086 (18) −0.0052 (18)
C14 0.051 (2) 0.050 (2) 0.050 (2) −0.0017 (19) 0.0119 (18) 0.0117 (19)
C15 0.052 (3) 0.057 (3) 0.049 (2) −0.002 (2) 0.0166 (19) 0.0071 (19)
C16 0.047 (2) 0.048 (2) 0.049 (2) 0.0000 (18) 0.0159 (18) 0.0054 (18)
C17 0.041 (2) 0.062 (2) 0.045 (2) 0.0010 (19) 0.0085 (17) 0.0048 (19)
C18 0.060 (3) 0.079 (3) 0.049 (2) −0.014 (2) 0.006 (2) −0.007 (2)
C19 0.065 (3) 0.070 (3) 0.060 (3) −0.012 (2) −0.003 (2) 0.004 (2)
C21 0.078 (4) 0.069 (3) 0.083 (3) −0.025 (3) 0.014 (3) −0.020 (3)
C22 0.200 (9) 0.055 (4) 0.130 (6) −0.020 (5) 0.103 (6) −0.027 (4)
C23 0.113 (6) 0.108 (5) 0.133 (6) 0.004 (5) 0.018 (4) −0.013 (5)
C20 0.050 (3) 0.065 (3) 0.090 (4) −0.011 (2) 0.012 (2) −0.018 (3)
N1 0.048 (2) 0.0485 (19) 0.0425 (18) 0.0038 (15) 0.0094 (15) −0.0007 (15)
N2 0.0392 (18) 0.059 (2) 0.0435 (18) 0.0003 (15) 0.0064 (14) 0.0105 (15)
N3 0.049 (2) 0.0425 (18) 0.0467 (18) 0.0004 (15) 0.0072 (15) 0.0051 (14)
O1 0.065 (2) 0.0447 (16) 0.0709 (19) 0.0053 (14) 0.0028 (15) 0.0099 (14)
O2 0.0531 (19) 0.0605 (19) 0.083 (2) −0.0114 (15) 0.0065 (15) −0.0023 (17)
O3 0.087 (3) 0.091 (3) 0.108 (3) −0.033 (2) 0.051 (2) −0.045 (2)
O4 0.103 (4) 0.108 (4) 0.163 (5) 0.011 (3) −0.003 (3) −0.033 (3)
O5 0.197 (7) 0.132 (5) 0.292 (9) −0.037 (5) 0.133 (6) −0.052 (6)
S1 0.0640 (8) 0.0544 (7) 0.0645 (7) −0.0083 (5) 0.0087 (5) −0.0151 (6)

Geometric parameters (Å, º)

C1—N1 1.299 (5) C15—H15A 0.9700
C1—N2 1.366 (5) C15—H15B 0.9700
C1—C2 1.491 (5) C16—N3 1.500 (5)
C2—C3 1.384 (5) C16—C17 1.508 (5)
C2—C7 1.398 (5) C16—H16A 0.9700
C3—C4 1.375 (6) C16—H16B 0.9700
C3—H3 0.9300 C17—N2 1.455 (5)
C4—C5 1.368 (6) C17—H17A 0.9700
C4—H4 0.9300 C17—H17B 0.9700
C5—C6 1.374 (6) C18—C19 1.501 (6)
C5—H5 0.9300 C18—N3 1.507 (5)
C6—C7 1.387 (6) C18—H18A 0.9700
C6—H6 0.9300 C18—H18B 0.9700
C7—S1 1.765 (4) C19—O2 1.410 (5)
C8—C9 1.390 (6) C19—H19A 0.9700
C8—C13 1.398 (6) C19—H19B 0.9700
C8—S1 1.771 (4) C21—O3 1.394 (5)
C9—C10 1.372 (7) C21—C20 1.491 (7)
C9—H9 0.9300 C21—H21A 0.9700
C10—C11 1.372 (7) C21—H21B 0.9700
C10—H10 0.9300 C22—O5 1.138 (8)
C11—C12 1.370 (6) C22—O4 1.237 (8)
C11—H11 0.9300 C22—C23 1.404 (9)
C12—C13 1.397 (6) C23—C23i 1.396 (13)
C12—H12 0.9300 C23—H23 0.9300
C13—N1 1.401 (5) C20—O2 1.411 (5)
C14—N2 1.461 (5) C20—H20A 0.9700
C14—C15 1.501 (5) C20—H20B 0.9700
C14—H14A 0.9700 N3—O1 1.388 (4)
C14—H14B 0.9700 O3—H301 0.8200
C15—N3 1.504 (5) O4—H401 0.8139
N1—C1—N2 117.2 (4) N3—C16—H16B 109.1
N1—C1—C2 126.2 (3) C17—C16—H16B 109.1
N2—C1—C2 116.2 (3) H16A—C16—H16B 107.9
C3—C2—C7 119.2 (4) N2—C17—C16 109.9 (3)
C3—C2—C1 119.8 (3) N2—C17—H17A 109.7
C7—C2—C1 121.0 (3) C16—C17—H17A 109.7
C4—C3—C2 120.7 (4) N2—C17—H17B 109.7
C4—C3—H3 119.6 C16—C17—H17B 109.7
C2—C3—H3 119.6 H17A—C17—H17B 108.2
C5—C4—C3 120.0 (4) C19—C18—N3 114.0 (4)
C5—C4—H4 120.0 C19—C18—H18A 108.8
C3—C4—H4 120.0 N3—C18—H18A 108.8
C4—C5—C6 120.4 (4) C19—C18—H18B 108.8
C4—C5—H5 119.8 N3—C18—H18B 108.8
C6—C5—H5 119.8 H18A—C18—H18B 107.7
C5—C6—C7 120.4 (4) O2—C19—C18 109.8 (4)
C5—C6—H6 119.8 O2—C19—H19A 109.7
C7—C6—H6 119.8 C18—C19—H19A 109.7
C6—C7—C2 119.2 (4) O2—C19—H19B 109.7
C6—C7—S1 119.9 (3) C18—C19—H19B 109.7
C2—C7—S1 120.8 (3) H19A—C19—H19B 108.2
C9—C8—C13 119.7 (4) O3—C21—C20 112.8 (5)
C9—C8—S1 120.0 (4) O3—C21—H21A 109.0
C13—C8—S1 120.2 (3) C20—C21—H21A 109.0
C10—C9—C8 120.8 (5) O3—C21—H21B 109.0
C10—C9—H9 119.6 C20—C21—H21B 109.0
C8—C9—H9 119.6 H21A—C21—H21B 107.8
C11—C10—C9 119.6 (4) O5—C22—O4 121.1 (8)
C11—C10—H10 120.2 O5—C22—C23 123.8 (9)
C9—C10—H10 120.2 O4—C22—C23 115.0 (7)
C12—C11—C10 120.7 (5) C23i—C23—C22 123.5 (10)
C12—C11—H11 119.7 C23i—C23—H23 118.3
C10—C11—H11 119.7 C22—C23—H23 118.3
C11—C12—C13 120.9 (4) O2—C20—C21 108.1 (4)
C11—C12—H12 119.6 O2—C20—H20A 110.1
C13—C12—H12 119.6 C21—C20—H20A 110.1
C12—C13—C8 118.2 (4) O2—C20—H20B 110.1
C12—C13—N1 116.8 (4) C21—C20—H20B 110.1
C8—C13—N1 124.6 (4) H20A—C20—H20B 108.4
N2—C14—C15 109.5 (3) C1—N1—C13 124.2 (3)
N2—C14—H14A 109.8 C1—N2—C17 120.4 (3)
C15—C14—H14A 109.8 C1—N2—C14 125.1 (3)
N2—C14—H14B 109.8 C17—N2—C14 111.9 (3)
C15—C14—H14B 109.8 O1—N3—C16 110.3 (3)
H14A—C14—H14B 108.2 O1—N3—C15 107.9 (3)
C14—C15—N3 110.7 (3) C16—N3—C15 109.2 (3)
C14—C15—H15A 109.5 O1—N3—C18 109.3 (3)
N3—C15—H15A 109.5 C16—N3—C18 111.4 (3)
C14—C15—H15B 109.5 C15—N3—C18 108.5 (3)
N3—C15—H15B 109.5 C19—O2—C20 113.1 (4)
H15A—C15—H15B 108.1 C21—O3—H301 109.5
N3—C16—C17 112.3 (3) C22—O4—H401 118.3
N3—C16—H16A 109.1 C7—S1—C8 97.02 (19)
C17—C16—H16A 109.1
N1—C1—C2—C3 125.9 (4) O4—C22—C23—C23i −0.5 (15)
N2—C1—C2—C3 −46.7 (5) O3—C21—C20—O2 −174.3 (4)
N1—C1—C2—C7 −53.2 (6) N2—C1—N1—C13 175.3 (3)
N2—C1—C2—C7 134.2 (4) C2—C1—N1—C13 2.7 (6)
C7—C2—C3—C4 −3.0 (6) C12—C13—N1—C1 −137.1 (4)
C1—C2—C3—C4 177.8 (4) C8—C13—N1—C1 50.3 (6)
C2—C3—C4—C5 0.2 (6) N1—C1—N2—C17 −1.1 (5)
C3—C4—C5—C6 3.3 (7) C2—C1—N2—C17 172.2 (3)
C4—C5—C6—C7 −3.9 (7) N1—C1—N2—C14 158.9 (4)
C5—C6—C7—C2 1.0 (7) C2—C1—N2—C14 −27.8 (5)
C5—C6—C7—S1 178.8 (4) C16—C17—N2—C1 −139.4 (4)
C3—C2—C7—C6 2.4 (6) C16—C17—N2—C14 58.1 (4)
C1—C2—C7—C6 −178.4 (4) C15—C14—N2—C1 137.9 (4)
C3—C2—C7—S1 −175.4 (3) C15—C14—N2—C17 −60.6 (4)
C1—C2—C7—S1 3.7 (5) C17—C16—N3—O1 −64.5 (4)
C13—C8—C9—C10 −0.2 (7) C17—C16—N3—C15 54.0 (4)
S1—C8—C9—C10 177.5 (4) C17—C16—N3—C18 173.9 (3)
C8—C9—C10—C11 0.5 (7) C14—C15—N3—O1 64.2 (4)
C9—C10—C11—C12 −1.3 (8) C14—C15—N3—C16 −55.8 (4)
C10—C11—C12—C13 1.8 (7) C14—C15—N3—C18 −177.5 (3)
C11—C12—C13—C8 −1.5 (6) C19—C18—N3—O1 −61.1 (5)
C11—C12—C13—N1 −174.6 (4) C19—C18—N3—C16 61.1 (5)
C9—C8—C13—C12 0.7 (6) C19—C18—N3—C15 −178.6 (4)
S1—C8—C13—C12 −177.0 (3) C18—C19—O2—C20 −177.8 (4)
C9—C8—C13—N1 173.3 (4) C21—C20—O2—C19 −178.9 (4)
S1—C8—C13—N1 −4.5 (5) C6—C7—S1—C8 −116.3 (4)
N2—C14—C15—N3 59.1 (4) C2—C7—S1—C8 61.6 (4)
N3—C16—C17—N2 −55.0 (4) C9—C8—S1—C7 119.6 (4)
N3—C18—C19—O2 −84.5 (5) C13—C8—S1—C7 −62.6 (4)
O5—C22—C23—C23i −177.4 (11)

Symmetry code: (i) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H401···O1 0.81 1.62 2.394 (6) 157
O3—H301···O1ii 0.82 1.90 2.691 (4) 161

Symmetry code: (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5294).

References

  1. Belal, F., Elbrashy, A., Eid, M. & Nasr, J. J. (2008). J. Liq. Chromatogr. Relat. Technol. 31, 1283–1298.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Lieberman, J. A. (1996). J. Clin. Psychiatry, 57, 68–71. [PubMed]
  6. Mittapelli, V., Vadali, L., Sivalakshmi, D. A. & Suryanarayana, M. V. (2010). Rasayan J. Chem. 3, 677–680.
  7. Ravikumar, K. & Sridhar, B. (2005). Acta Cryst. E61, o3245–o3248. [DOI] [PubMed]
  8. Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku (2007). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Trivedi, R. K. & Patel, M. C. (2011). Sci. Pharm. 79, 97–111. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020818/cv5294sup1.cif

e-68-o1753-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020818/cv5294Isup2.hkl

e-68-o1753-Isup2.hkl (190.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES