Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1758. doi: 10.1107/S1600536812020582

3-(2-Methyl-2-nitro­prop­yl)-1H-indole

Zheng Fang a, Feng Zhang a, Bao-hua Zou a, Kai Guo b,*
PMCID: PMC3379343  PMID: 22719541

Abstract

In the title compound, C12H14N2O2, the indole ring is essentially planar, with an r.m.s. deviation of 0.0136 Å. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers..

Related literature  

The title compound is an inter­mediate of the β-adrenergic receptor antagonist (β blocker) bucindolol {systematic name: 1-[[2-(3-indol­yl)-1,1-dimethyl­eth­yl]amino]-3-(2-nitrilear­yloxy)-2-propanol)}, see: Qiu et al., (2003). For synthetic procedures, see: Kerighbaum et al. (1980). For a related structure, see: Léger et al. (1984).graphic file with name e-68-o1758-scheme1.jpg

Experimental  

Crystal data  

  • C12H14N2O2

  • M r = 218.25

  • Monoclinic, Inline graphic

  • a = 6.1170 (12) Å

  • b = 10.123 (2) Å

  • c = 18.868 (4) Å

  • β = 91.36 (3)°

  • V = 1168.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.983, T max = 0.992

  • 2354 measured reflections

  • 2141 independent reflections

  • 1089 reflections with I > 2σ(I)

  • R int = 0.029

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.179

  • S = 1.00

  • 2141 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020582/pv2541sup1.cif

e-68-o1758-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020582/pv2541Isup2.hkl

e-68-o1758-Isup2.hkl (105.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020582/pv2541Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.55 3.187 (4) 132

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported financially by the College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, the 973 project (2012CB725204) and the Key Basic Research Program of China.

supplementary crystallographic information

Comment

Bucindolol, 1-[[2-(3-indolyl)-1,l-dimethylethyl]-amino]-3-(2-nitrile-aryloxy)-2-propanol, is one of the β-adrenergic receptor antagonists (β blocker) for the treatment of essential hypertension (Qiu et al., 2003). As a part of our studies on the synthesis of Bucindolol, the title compound (Fig. 1) which is used as the key intermediate, has been synthesized and its crystal structure reported in this article. The crystal structure of the title compound is stabilized by N1—H1A···O2 hydrogen bonds resulting in dimers of molecules lying about inversion centers (Fig. 1 and Tab. 1). The bond distances and angles in the title molecule are in excellent agreement with the corresponding bond distances and angles reported for a related structure (Léger et al., 1984).

Experimental

A mixture of gramine (13.0 g,(0.069 mol), 2-nitropropane (44 g,(0.49 mol), and NaOH pellets (2.9 g, 0.072 mol) was stirred and heated at reflux for 18 h. After the mixture had cooled to 298 K, 10% HOAc (60 ml) was added and stirring was continued for 1 h. The mixture was partitioned between 150 ml each of EtOH and water to afford an organic layer, which was separated, washed three times with water, and dried over MgS04. Evaporation afforded 16.5 g of dark oil which slowly crystallized on standing at 298 K. Recrystallization of the crude product from EtOH-H20 (1:1) gave 12.6 g (78%) of the title compound as pure yellow crystals (Kerighbaum et al., 1980). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93, 0.96 and 0.97 Å, for aryl, methyl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(methyl C) or 1.2Ueq(non-methyl C/N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the N—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.

Crystal data

C12H14N2O2 F(000) = 464
Mr = 218.25 Dx = 1.241 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 6.1170 (12) Å θ = 9–13°
b = 10.123 (2) Å µ = 0.09 mm1
c = 18.868 (4) Å T = 293 K
β = 91.36 (3)° Block, yellow
V = 1168.0 (4) Å3 0.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1089 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
Graphite monochromator θmax = 25.4°, θmin = 2.2°
ω/2θ scans h = 0→7
Absorption correction: ψ scan (North et al., 1968) k = 0→12
Tmin = 0.983, Tmax = 0.992 l = −22→22
2354 measured reflections 3 standard reflections every 200 reflections
2141 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.084P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2141 reflections Δρmax = 0.14 e Å3
146 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.043 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3793 (4) 0.2257 (3) 1.01215 (14) 0.1125 (10)
C1 0.3885 (5) 0.3891 (3) 0.78945 (14) 0.0565 (8)
N1 0.5544 (5) 0.5489 (3) 0.85178 (14) 0.0795 (9)
H1A 0.6445 0.6098 0.8650 0.095*
O2 0.1178 (5) 0.3613 (3) 1.02354 (13) 0.0997 (9)
C2 0.3631 (5) 0.3039 (3) 0.73199 (16) 0.0680 (9)
H2A 0.2434 0.2474 0.7288 0.082*
N2 0.2086 (5) 0.2746 (3) 0.99150 (14) 0.0704 (8)
C3 0.5157 (7) 0.3042 (4) 0.68028 (18) 0.0818 (11)
H3A 0.4991 0.2472 0.6419 0.098*
C4 0.6966 (7) 0.3888 (4) 0.68414 (19) 0.0860 (11)
H4A 0.7994 0.3858 0.6487 0.103*
C5 0.7254 (6) 0.4763 (4) 0.73929 (19) 0.0784 (10)
H5A 0.8442 0.5335 0.7418 0.094*
C6 0.5676 (5) 0.4748 (3) 0.79116 (16) 0.0651 (8)
C7 0.3738 (6) 0.5096 (3) 0.88767 (17) 0.0742 (10)
H7A 0.3307 0.5450 0.9306 0.089*
C8 0.2668 (5) 0.4125 (3) 0.85229 (14) 0.0593 (8)
C9 0.0639 (5) 0.3434 (3) 0.87513 (15) 0.0681 (9)
H9A −0.0179 0.3157 0.8330 0.082*
H9B −0.0259 0.4065 0.9000 0.082*
C10 0.0990 (4) 0.2237 (3) 0.92255 (15) 0.0594 (8)
C11 −0.1206 (5) 0.1680 (4) 0.9453 (2) 0.0956 (13)
H11A −0.2075 0.2377 0.9646 0.143*
H11B −0.0964 0.1010 0.9806 0.143*
H11C −0.1961 0.1303 0.9049 0.143*
C12 0.2438 (5) 0.1190 (3) 0.89062 (18) 0.0751 (10)
H12A 0.3789 0.1583 0.8767 0.113*
H12B 0.1709 0.0811 0.8498 0.113*
H12C 0.2732 0.0511 0.9251 0.113*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0832 (17) 0.165 (3) 0.0884 (18) 0.013 (2) −0.0211 (15) −0.0015 (18)
C1 0.0663 (19) 0.0544 (17) 0.0482 (17) 0.0097 (16) −0.0089 (14) −0.0007 (14)
N1 0.103 (2) 0.0663 (18) 0.0686 (18) −0.0168 (17) −0.0142 (16) −0.0007 (15)
O2 0.131 (2) 0.104 (2) 0.0646 (15) 0.0075 (17) 0.0064 (14) −0.0244 (15)
C2 0.085 (2) 0.065 (2) 0.0542 (18) 0.0045 (18) −0.0038 (16) −0.0053 (16)
N2 0.0663 (18) 0.087 (2) 0.0576 (16) −0.0094 (17) 0.0052 (14) 0.0047 (16)
C3 0.115 (3) 0.073 (2) 0.0575 (19) 0.018 (2) 0.005 (2) −0.0036 (18)
C4 0.099 (3) 0.094 (3) 0.066 (2) 0.024 (3) 0.015 (2) 0.019 (2)
C5 0.080 (2) 0.079 (2) 0.076 (2) 0.001 (2) −0.007 (2) 0.024 (2)
C6 0.079 (2) 0.0619 (19) 0.0543 (18) 0.0063 (19) −0.0058 (17) 0.0084 (16)
C7 0.099 (3) 0.069 (2) 0.0540 (19) 0.004 (2) −0.0044 (19) −0.0060 (17)
C8 0.072 (2) 0.0553 (18) 0.0500 (17) 0.0110 (17) −0.0094 (15) −0.0021 (15)
C9 0.0590 (19) 0.091 (2) 0.0543 (18) 0.0182 (18) −0.0052 (14) −0.0103 (17)
C10 0.0523 (17) 0.071 (2) 0.0552 (17) −0.0026 (16) −0.0003 (14) −0.0109 (15)
C11 0.062 (2) 0.117 (3) 0.108 (3) −0.020 (2) 0.020 (2) −0.020 (3)
C12 0.075 (2) 0.068 (2) 0.083 (2) −0.0041 (18) 0.0151 (18) −0.0052 (18)

Geometric parameters (Å, º)

O1—N2 1.212 (3) C5—H5A 0.9300
C1—C2 1.391 (4) C7—C8 1.349 (4)
C1—C6 1.397 (4) C7—H7A 0.9300
C1—C8 1.435 (4) C8—C9 1.497 (4)
N1—C7 1.369 (4) C9—C10 1.519 (4)
N1—C6 1.372 (4) C9—H9A 0.9700
N1—H1A 0.8600 C9—H9B 0.9700
O2—N2 1.208 (3) C10—C12 1.516 (4)
C2—C3 1.366 (4) C10—C11 1.528 (4)
C2—H2A 0.9300 C11—H11A 0.9600
N2—C10 1.538 (4) C11—H11B 0.9600
C3—C4 1.400 (5) C11—H11C 0.9600
C3—H3A 0.9300 C12—H12A 0.9600
C4—C5 1.374 (5) C12—H12B 0.9600
C4—H4A 0.9300 C12—H12C 0.9600
C5—C6 1.391 (5)
C2—C1—C6 118.4 (3) C7—C8—C1 105.9 (3)
C2—C1—C8 134.1 (3) C7—C8—C9 126.4 (3)
C6—C1—C8 107.5 (3) C1—C8—C9 127.7 (3)
C7—N1—C6 108.5 (3) C8—C9—C10 115.8 (2)
C7—N1—H1A 125.7 C8—C9—H9A 108.3
C6—N1—H1A 125.7 C10—C9—H9A 108.3
C3—C2—C1 119.3 (3) C8—C9—H9B 108.3
C3—C2—H2A 120.3 C10—C9—H9B 108.3
C1—C2—H2A 120.3 H9A—C9—H9B 107.4
O2—N2—O1 122.6 (3) C12—C10—C9 113.6 (2)
O2—N2—C10 118.0 (3) C12—C10—C11 112.3 (3)
O1—N2—C10 119.3 (3) C9—C10—C11 110.3 (3)
C2—C3—C4 121.1 (3) C12—C10—N2 108.9 (2)
C2—C3—H3A 119.4 C9—C10—N2 106.5 (2)
C4—C3—H3A 119.4 C11—C10—N2 104.8 (2)
C5—C4—C3 121.4 (3) C10—C11—H11A 109.5
C5—C4—H4A 119.3 C10—C11—H11B 109.5
C3—C4—H4A 119.3 H11A—C11—H11B 109.5
C4—C5—C6 116.6 (4) C10—C11—H11C 109.5
C4—C5—H5A 121.7 H11A—C11—H11C 109.5
C6—C5—H5A 121.7 H11B—C11—H11C 109.5
N1—C6—C5 129.5 (3) C10—C12—H12A 109.5
N1—C6—C1 107.3 (3) C10—C12—H12B 109.5
C5—C6—C1 123.2 (3) H12A—C12—H12B 109.5
C8—C7—N1 110.8 (3) C10—C12—H12C 109.5
C8—C7—H7A 124.6 H12A—C12—H12C 109.5
N1—C7—H7A 124.6 H12B—C12—H12C 109.5
C6—C1—C2—C3 1.7 (4) C2—C1—C8—C7 −179.3 (3)
C8—C1—C2—C3 −178.4 (3) C6—C1—C8—C7 0.6 (3)
C1—C2—C3—C4 −0.1 (5) C2—C1—C8—C9 1.2 (5)
C2—C3—C4—C5 −1.2 (5) C6—C1—C8—C9 −178.8 (3)
C3—C4—C5—C6 0.9 (5) C7—C8—C9—C10 −87.7 (4)
C7—N1—C6—C5 −178.0 (3) C1—C8—C9—C10 91.6 (3)
C7—N1—C6—C1 0.8 (3) C8—C9—C10—C12 −56.2 (3)
C4—C5—C6—N1 179.4 (3) C8—C9—C10—C11 176.7 (3)
C4—C5—C6—C1 0.8 (4) C8—C9—C10—N2 63.6 (3)
C2—C1—C6—N1 179.1 (3) O2—N2—C10—C12 178.4 (3)
C8—C1—C6—N1 −0.9 (3) O1—N2—C10—C12 −2.7 (4)
C2—C1—C6—C5 −2.0 (4) O2—N2—C10—C9 55.6 (3)
C8—C1—C6—C5 178.0 (3) O1—N2—C10—C9 −125.5 (3)
C6—N1—C7—C8 −0.4 (4) O2—N2—C10—C11 −61.3 (4)
N1—C7—C8—C1 −0.1 (3) O1—N2—C10—C11 117.6 (3)
N1—C7—C8—C9 179.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.55 3.187 (4) 132

Symmetry code: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2541).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Kerighbaum, W. E., Matier, W. L. & Dennis, R. D. (1980). J. Med. Chem. 23, 285–289. [DOI] [PubMed]
  4. Léger, J.-M., Goursolle, M. & Carpy, A. (1984). Acta Cryst. C40, 706–708.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Qiu, F., Wang, L. & Dong, Y. (2003). Zhongguo Yaowu Huaxue Zazhi, 13, 353–355.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020582/pv2541sup1.cif

e-68-o1758-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020582/pv2541Isup2.hkl

e-68-o1758-Isup2.hkl (105.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020582/pv2541Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES