Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):o1761. doi: 10.1107/S1600536812021538

(E)-1-[4-(3-Bromo­prop­oxy)phen­yl]-2-p-tolyl­diazene

Zhen-Xiang Yu a,*, Bao Li b
PMCID: PMC3379346  PMID: 22719544

Abstract

In the title mol­ecule, C16H17BrN2O, the benzene rings, bridged by a diazene fragment, form a dihedral angle of 6.3 (2)°. The crystal packing exhibits relatively short Br⋯Br contacts of 3.6989 (14) Å.

Related literature  

For the crystal structure of (E)-4-(p-tolydiazen­yl)phenol, see: Petek et al. (2006). For details of the synthesis, see: Badawi et al. (2006).graphic file with name e-68-o1761-scheme1.jpg

Experimental  

Crystal data  

  • C16H17BrN2O

  • M r = 333.23

  • Monoclinic, Inline graphic

  • a = 26.530 (15) Å

  • b = 4.785 (2) Å

  • c = 11.810 (7) Å

  • β = 102.85 (2)°

  • V = 1461.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.81 mm−1

  • T = 293 K

  • 0.24 × 0.23 × 0.22 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.553, T max = 0.574

  • 13590 measured reflections

  • 3337 independent reflections

  • 1860 reflections with I > 2σ(I)

  • R int = 0.080

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.180

  • S = 1.01

  • 3337 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021538/cv5298sup1.cif

e-68-o1761-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021538/cv5298Isup2.hkl

e-68-o1761-Isup2.hkl (163.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021538/cv5298Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The azobenzene and its derivate have been widely investigated due to the trans-cis transformations of N=N double bond caused by heating, light or other effects. Herein, we report the crystal structure of the title compound (I), which is a new derivate of azobenzene.

In (I) (Fig. 1), all bond lengths and angles are in normal ranges and comparable with those in similar structure (Petek et al., 2006). The dihedral angle between the two aromatic rings is 6.3 (2)°. The crystal packing exhibits relatively short intermolecular Br···Br contacts of 3.6989 (14) Å.

Experimental

The title compound was prepared by refluxing 4-((4-methylphenyl)azo)phenol with 1,3-dibromopropane in acetone according to the known procedure (Badawi et al. 2006). Single crystals suitable for X-ray diffraction were obtained by slow evaporation method at room temperature.

Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model with Uiso(H) = 1.5 or 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with displacement ellipsoids drawn at the 30% probalility level.

Crystal data

C16H17BrN2O F(000) = 680
Mr = 333.23 Dx = 1.514 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6956 reflections
a = 26.530 (15) Å θ = 3.4–27.5°
b = 4.785 (2) Å µ = 2.81 mm1
c = 11.810 (7) Å T = 293 K
β = 102.85 (2)° Block, yellow
V = 1461.8 (13) Å3 0.24 × 0.23 × 0.22 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 3337 independent reflections
Radiation source: fine-focus sealed tube 1860 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.080
ω scans θmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −34→33
Tmin = 0.553, Tmax = 0.574 k = −6→6
13590 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0906P)2] where P = (Fo2 + 2Fc2)/3
3337 reflections (Δ/σ)max = 0.012
182 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Experimental. (See detailed section in the paper)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.03507 (2) 1.74980 (10) 0.35896 (4) 0.0780 (3)
C1 0.07293 (17) 1.5076 (9) 0.4814 (4) 0.0666 (12)
H1A 0.0493 1.3736 0.5031 0.080*
H1B 0.0990 1.4048 0.4527 0.080*
C2 0.09770 (19) 1.6700 (8) 0.5834 (4) 0.0638 (12)
H2A 0.0716 1.7772 0.6102 0.077*
H2B 0.1219 1.8008 0.5617 0.077*
C3 0.12642 (16) 1.4854 (7) 0.6820 (3) 0.0555 (10)
H3A 0.1414 1.5984 0.7493 0.067*
H3B 0.1029 1.3514 0.7042 0.067*
C4 0.19783 (14) 1.1643 (7) 0.7148 (3) 0.0438 (8)
C5 0.23339 (14) 1.0199 (7) 0.6659 (3) 0.0461 (9)
H5 0.2351 1.0542 0.5893 0.055*
C6 0.26574 (16) 0.8279 (7) 0.7304 (3) 0.0475 (9)
H6 0.2897 0.7334 0.6977 0.057*
C7 0.26299 (16) 0.7723 (6) 0.8464 (4) 0.0436 (9)
C8 0.22842 (15) 0.9224 (7) 0.8937 (3) 0.0486 (9)
H8 0.2272 0.8924 0.9708 0.058*
C9 0.19546 (15) 1.1169 (7) 0.8291 (3) 0.0475 (9)
H9 0.1720 1.2144 0.8621 0.057*
C10 0.35721 (16) 0.2505 (6) 0.9470 (3) 0.0426 (8)
C11 0.39446 (15) 0.1260 (8) 0.8990 (3) 0.0498 (9)
H11 0.3969 0.1742 0.8241 0.060*
C12 0.42806 (15) −0.0681 (7) 0.9600 (3) 0.0490 (9)
H12 0.4531 −0.1474 0.9260 0.059*
C13 0.42526 (14) −0.1473 (7) 1.0710 (3) 0.0395 (8)
C14 0.38674 (14) −0.0307 (7) 1.1179 (3) 0.0453 (9)
H14 0.3832 −0.0870 1.1911 0.054*
C15 0.35311 (15) 0.1696 (7) 1.0573 (3) 0.0470 (9)
H15 0.3279 0.2489 1.0909 0.056*
C16 0.46205 (15) −0.3593 (9) 1.1367 (3) 0.0514 (10)
H16A 0.4653 −0.3327 1.2186 0.077*
H16B 0.4953 −0.3373 1.1183 0.077*
H16C 0.4491 −0.5438 1.1154 0.077*
N1 0.29418 (12) 0.5728 (6) 0.9213 (3) 0.0476 (8)
N2 0.32604 (13) 0.4536 (6) 0.8743 (3) 0.0474 (8)
O1 0.16630 (11) 1.3435 (5) 0.6400 (2) 0.0526 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0757 (4) 0.0956 (5) 0.0551 (3) −0.0036 (3) −0.0017 (3) 0.0109 (2)
C1 0.059 (3) 0.072 (3) 0.064 (3) 0.003 (2) 0.005 (2) 0.000 (2)
C2 0.064 (3) 0.057 (2) 0.062 (3) 0.011 (2) −0.003 (2) −0.004 (2)
C3 0.056 (3) 0.052 (2) 0.056 (2) 0.0144 (19) 0.005 (2) −0.0005 (18)
C4 0.038 (2) 0.0410 (17) 0.048 (2) −0.0028 (15) 0.0019 (17) −0.0006 (16)
C5 0.046 (2) 0.052 (2) 0.0408 (19) −0.0021 (17) 0.0106 (17) 0.0005 (17)
C6 0.043 (2) 0.0473 (19) 0.052 (2) 0.0040 (16) 0.0107 (18) −0.0037 (16)
C7 0.044 (2) 0.0375 (17) 0.046 (2) −0.0043 (16) 0.0021 (17) 0.0009 (15)
C8 0.055 (2) 0.047 (2) 0.045 (2) −0.0017 (18) 0.0115 (18) 0.0027 (16)
C9 0.045 (2) 0.0459 (18) 0.051 (2) 0.0026 (17) 0.0104 (18) 0.0006 (17)
C10 0.045 (2) 0.0383 (17) 0.0410 (19) 0.0010 (16) 0.0025 (17) 0.0022 (15)
C11 0.055 (3) 0.055 (2) 0.039 (2) 0.0079 (19) 0.0093 (18) 0.0049 (17)
C12 0.053 (2) 0.050 (2) 0.046 (2) 0.0090 (18) 0.0162 (18) 0.0032 (17)
C13 0.044 (2) 0.0343 (16) 0.0392 (19) −0.0036 (15) 0.0063 (16) −0.0017 (14)
C14 0.052 (2) 0.0468 (19) 0.0373 (19) −0.0034 (17) 0.0109 (17) −0.0010 (16)
C15 0.043 (2) 0.0472 (18) 0.052 (2) 0.0009 (16) 0.0138 (19) −0.0076 (16)
C16 0.049 (2) 0.0476 (19) 0.055 (2) 0.0024 (18) 0.005 (2) 0.0058 (17)
N1 0.0466 (19) 0.0482 (17) 0.0462 (18) −0.0038 (15) 0.0068 (15) −0.0052 (14)
N2 0.0490 (19) 0.0426 (16) 0.0492 (18) −0.0005 (14) 0.0078 (15) −0.0032 (14)
O1 0.0480 (17) 0.0547 (14) 0.0530 (16) 0.0102 (13) 0.0070 (13) 0.0100 (13)

Geometric parameters (Å, º)

Br1—C1 1.948 (4) C7—N1 1.433 (5)
Br1—Br1i 3.6989 (14) C8—C9 1.384 (5)
Br1—Br1ii 3.6989 (14) C8—H8 0.9300
C1—C2 1.461 (6) C9—H9 0.9300
C1—H1A 0.9700 C10—C11 1.379 (5)
C1—H1B 0.9700 C10—C15 1.387 (5)
C2—C3 1.524 (5) C10—N2 1.432 (4)
C2—H2A 0.9700 C11—C12 1.375 (5)
C2—H2B 0.9700 C11—H11 0.9300
C3—O1 1.435 (4) C12—C13 1.382 (5)
C3—H3A 0.9700 C12—H12 0.9300
C3—H3B 0.9700 C13—C14 1.383 (5)
C4—O1 1.373 (5) C13—C16 1.499 (5)
C4—C9 1.384 (5) C14—C15 1.394 (5)
C4—C5 1.395 (5) C14—H14 0.9300
C5—C6 1.367 (5) C15—H15 0.9300
C5—H5 0.9300 C16—H16A 0.9600
C6—C7 1.413 (5) C16—H16B 0.9600
C6—H6 0.9300 C16—H16C 0.9600
C7—C8 1.378 (5) N1—N2 1.248 (4)
C1—Br1—Br1i 103.19 (13) C7—C8—C9 121.6 (4)
C1—Br1—Br1ii 176.05 (13) C7—C8—H8 119.2
Br1i—Br1—Br1ii 80.61 (4) C9—C8—H8 119.2
C2—C1—Br1 111.0 (3) C4—C9—C8 119.2 (4)
C2—C1—H1A 109.4 C4—C9—H9 120.4
Br1—C1—H1A 109.4 C8—C9—H9 120.4
C2—C1—H1B 109.4 C11—C10—C15 118.6 (3)
Br1—C1—H1B 109.4 C11—C10—N2 114.7 (3)
H1A—C1—H1B 108.0 C15—C10—N2 126.7 (3)
C1—C2—C3 112.2 (3) C12—C11—C10 121.1 (3)
C1—C2—H2A 109.2 C12—C11—H11 119.5
C3—C2—H2A 109.2 C10—C11—H11 119.5
C1—C2—H2B 109.2 C11—C12—C13 121.1 (3)
C3—C2—H2B 109.2 C11—C12—H12 119.4
H2A—C2—H2B 107.9 C13—C12—H12 119.4
O1—C3—C2 107.0 (3) C14—C13—C12 118.0 (3)
O1—C3—H3A 110.3 C14—C13—C16 121.3 (3)
C2—C3—H3A 110.3 C12—C13—C16 120.7 (3)
O1—C3—H3B 110.3 C13—C14—C15 121.2 (3)
C2—C3—H3B 110.3 C13—C14—H14 119.4
H3A—C3—H3B 108.6 C15—C14—H14 119.4
O1—C4—C9 125.2 (3) C10—C15—C14 119.9 (3)
O1—C4—C5 114.5 (3) C10—C15—H15 120.0
C9—C4—C5 120.3 (3) C14—C15—H15 120.0
C6—C5—C4 120.1 (3) C13—C16—H16A 109.5
C6—C5—H5 120.0 C13—C16—H16B 109.5
C4—C5—H5 120.0 H16A—C16—H16B 109.5
C5—C6—C7 120.3 (3) C13—C16—H16C 109.5
C5—C6—H6 119.8 H16A—C16—H16C 109.5
C7—C6—H6 119.8 H16B—C16—H16C 109.5
C8—C7—C6 118.5 (3) N2—N1—C7 112.6 (3)
C8—C7—N1 116.2 (3) N1—N2—C10 113.7 (3)
C6—C7—N1 125.2 (3) C4—O1—C3 117.6 (3)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5298).

References

  1. Badawi, A. M., Azzam, E. M. S. & Morsy, S. M. (2006). Bioorg. Med. Chem. 14, 8661–8665. [DOI] [PubMed]
  2. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  3. Petek, H., Erşahin, F., Albayrak, Ç., Ağar, E. & Şenel, İ. (2006). Acta Cryst. E62, o5874–o5875.
  4. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2002). CrystalStructure MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021538/cv5298sup1.cif

e-68-o1761-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021538/cv5298Isup2.hkl

e-68-o1761-Isup2.hkl (163.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021538/cv5298Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES