Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1776–o1777. doi: 10.1107/S1600536812021198

2-[(Cyclo­hex-3-en-1-ylmeth­oxy)meth­yl]-6-phenyl-1,2,4-triazine-3,5(2H,4H)-dione

Nasser R El-Brollosy a,b,, Mohamed I Attia a, Ali A El-Emam a, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3379356  PMID: 22719554

Abstract

In the title 1,2,4-triazine derivative, C17H19N3O3, the heterocyclic ring is planar (r.m.s. deviation = 0.040 Å) and effectively coplanar with the adjacent phenyl ring [dihedral angle = 4.5 (2)°] but almost perpendicular to the (cyclo­hex-3-en-1-ylmeth­oxy)methyl residue [N—N—C—O torsion angle = 71.6 (5)°], so that the mol­ecule has an ‘L’ shape. Supra­molecular chains along [001] are formed in the crystal via N—H⋯O hydrogen bonds where the acceptor O atom is the ether O atom. The adjacent carbonyl O atom forms a complementary C—H⋯O contact resulting in the formation of a seven-membered {⋯HNCO⋯HCO} heterosynthon; the second carbonyl O atom forms an intra­molecular C—H⋯O contact. Chains are connected into a supra­molecular layer in the ac plane by π–π inter­actions [ring centroid–centroid distance = 3.488 (3) Å]. The central atom in the –CH2CH2C(H)= residue of the cyclo­hexene ring is disordered over two sites, with the major component having a site-occupancy factor of 0.51 (2).

Related literature  

For the potential medicinal applications of 1,2,4-triazines, see: Ban et al. (2010); Irannejad et al. (2010); Sangshetti & Shinde (2010). For the synthesis, see: El-Brollosy (2008).graphic file with name e-68-o1776-scheme1.jpg

Experimental  

Crystal data  

  • C17H19N3O3

  • M r = 313.35

  • Monoclinic, Inline graphic

  • a = 4.7924 (6) Å

  • b = 13.7083 (19) Å

  • c = 11.8293 (15) Å

  • β = 101.538 (12)°

  • V = 761.43 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.03 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.806, T max = 1.000

  • 4230 measured reflections

  • 1757 independent reflections

  • 1158 reflections with I > 2σ(I)

  • R int = 0.078

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.133

  • S = 1.04

  • 1757 reflections

  • 212 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021198/su2425sup1.cif

e-68-o1776-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021198/su2425Isup2.hkl

e-68-o1776-Isup2.hkl (86.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021198/su2425Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 2.00 2.877 (5) 174
C2—H2⋯O1 0.95 2.21 2.880 (7) 127
C10—H10B⋯O2ii 0.99 2.46 3.352 (6) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Several 1,2,4-triazines have been shown to exhibit herbicidal, anti-viral, anti-microbial, anti-inflammatory, anti-malarial, anti-cancer, anti-proliferative and neuroprotective activities (Ban et al., 2010; Irannejad et al., 2010; Sangshetti & Shinde, 2010). The title compound (I), was originally synthesized as a potential anti-microbial agent (El-Brollosy, 2008). Herein, we describe the results of its crystal structure determination.

The six ring atoms comprising the 2,4-dihydro-1,2,4-triazine-3,5-dione residue in (I), Fig. 1, are co-planar with a r.m.s. = 0.040 Å; the maximum deviations from their least-squares plane being 0.035 (5) Å for the C7 atom and -0.039 (5) Å for the C8 atom. The dihedral angle between this ring and the attached phenyl ring of 4.5 (2)° is consistent with an almost co-planar relationship. The (cyclohex-3-en-1-ylmethoxy)methyl residue lies perpendicular to the rest of the molecule as seen in the value of the N3—N2—C10—O3 torsion angle of 71.6 (5)°, so that to a first approximation the molecule has an L-shape.

The crystal structure features supramolecular chains along [001]. These are mediated by, perhaps surprisingly, N—H···O hydrogen bonds where the O atom is the ether O atom, rather than carbonyl O atoms. The adjacent carbonyl-O2 atom forms a complementary C—H···O contact resulting in the formation of a seven-membered {···HNCO···HCO} heterosynthon, Fig. 2 and Table 1. The carbonyl-O1 atom forms an intramolecular C—H..O interaction. The chains are connected into supramolecular layers in the ac plane by π—π interactions [ring centroid(N1–N3,C7–C9)···centroid(C1–C6)i = 3.488 (3) Å and tilt angle = 4.5 (2)°; symmetry code: (i) x+1, y, z], Fig. 3. Supramolecular layers stack along the b axis with no specific interactions between them, Fig. 4.

Experimental

5-Phenyl-6-azauracil (0.189 g, 1 mmol) was stirred in dry acetonitrile (15 ml) under nitrogen and N,O-bis-trimethylsilylacetamide (0.87 ml, 3.5 mmol) was added. After a clear solution was obtained (10 min), the mixture was cooled to 223 K and trimethylsilyl trifluoromethanesulphonate (0.18 ml, 1 mmol) was added followed by the drop wise addition of bis(3-cyclohexen-1-ylmethoxy)methane (0.472 g, 2 mmol). The reaction mixture was stirred at room temperature for 5 h. The reaction was quenched by addition of sat. aq. NaHCO3 solution (5 ml). The mixture was evaporated under reduced pressure and the residue was extracted with ether (3 x 50 ml). The combined ether fractions were collected, dried (MgSO4) and evaporated under reduced pressure. The residue was purified on a silica gel column using 1:5 petroleum ether / chloroform to give the title compound in 64% (0.199 g) yield. Colourless crystals were obtained upon crystallization from its ethanol solution (El-Brollosy, 2008).

Refinement

H-atoms were placed in calculated positions [N—H = 0.88 and C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(N,C)] and were included in the refinement in the riding model approximation. The amino H-atom was refined freely. In the absence of significant anomalous scattering effects, 799 Friedel pairs were averaged in the final refinement. The C16 atom of the cyclohexene ring was disordered over two positions. From anisotropic refinement, the major component of the disorder had a site occupancy factor = 0.51 (2). The pairs of the respective C15—C16/C16'—C17 bond lengths were restrained to be within 0.01 Å of each other; the anisotropic displacement parameters for the disordered atoms were constrained to be equal.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered C16 atom is shown.

Fig. 2.

Fig. 2.

A view of the supramolecular chain in (I) mediated by N—H···O hydrogen bonding and reinforced by C—H···O interactions, shown as blue and orange dashed lines, respectively.

Fig. 3.

Fig. 3.

A view of the supramolecular layer parallel to the ac plane in (I). The N—H···O and π—π interactions are shown as blue and purple dashed lines, respectively. Hydrogen atoms not participating in intermolecular interactions have been omitted.

Fig. 4.

Fig. 4.

A view in projection down the a axis of the unit-cell contents for (I). The N—H···O and π—π interactions are shown as blue and purple dashed lines, respectively.

Crystal data

C17H19N3O3 F(000) = 332
Mr = 313.35 Dx = 1.367 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 801 reflections
a = 4.7924 (6) Å θ = 2.3–27.5°
b = 13.7083 (19) Å µ = 0.10 mm1
c = 11.8293 (15) Å T = 100 K
β = 101.538 (12)° Plate, colourless
V = 761.43 (17) Å3 0.35 × 0.15 × 0.03 mm
Z = 2

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1757 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1158 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.078
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.3°
ω scan h = −5→6
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −17→17
Tmin = 0.806, Tmax = 1.000 l = −15→15
4230 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0421P)2] where P = (Fo2 + 2Fc2)/3
1757 reflections (Δ/σ)max = 0.002
212 parameters Δρmax = 0.24 e Å3
4 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.4970 (7) 0.7062 (3) 0.4998 (3) 0.0321 (9)
O2 1.2011 (7) 0.4812 (3) 0.5519 (3) 0.0245 (8)
O3 0.9583 (7) 0.3645 (2) 0.8023 (3) 0.0228 (8)
N1 0.8476 (9) 0.5948 (3) 0.5278 (4) 0.0205 (9)
H1 0.8696 0.6052 0.4567 0.025*
N2 0.9682 (7) 0.5123 (3) 0.7000 (3) 0.0190 (10)
N3 0.7856 (7) 0.5669 (3) 0.7480 (3) 0.0194 (9)
C1 0.4436 (9) 0.6924 (4) 0.7489 (4) 0.0201 (11)
C2 0.2789 (10) 0.7697 (4) 0.6974 (5) 0.0253 (12)
H2 0.2844 0.7872 0.6202 0.030*
C3 0.1041 (10) 0.8224 (4) 0.7579 (5) 0.0275 (13)
H3 −0.0072 0.8754 0.7221 0.033*
C4 0.0957 (11) 0.7960 (4) 0.8709 (5) 0.0244 (12)
H4 −0.0211 0.8315 0.9125 0.029*
C5 0.2553 (10) 0.7192 (4) 0.9223 (5) 0.0260 (12)
H5 0.2458 0.7011 0.9989 0.031*
C6 0.4310 (11) 0.6673 (4) 0.8634 (5) 0.0251 (12)
H6 0.5428 0.6148 0.9004 0.030*
C7 0.6321 (9) 0.6348 (4) 0.6886 (4) 0.0205 (11)
C8 0.6423 (10) 0.6503 (4) 0.5652 (4) 0.0209 (11)
C9 1.0207 (10) 0.5252 (4) 0.5896 (4) 0.0185 (11)
C10 1.1326 (10) 0.4421 (4) 0.7787 (4) 0.0217 (11)
H10A 1.2888 0.4159 0.7441 0.026*
H10B 1.2188 0.4752 0.8517 0.026*
C11 0.8986 (11) 0.2912 (4) 0.7141 (5) 0.0252 (12)
H11A 1.0778 0.2701 0.6920 0.030*
H11B 0.7715 0.3182 0.6449 0.030*
C12 0.7570 (10) 0.2050 (4) 0.7590 (4) 0.0221 (11)
H12 0.5764 0.2283 0.7801 0.027*
C13 0.6801 (13) 0.1266 (4) 0.6644 (5) 0.0376 (14)
H13A 0.5451 0.1545 0.5980 0.045*
H13B 0.8544 0.1070 0.6373 0.045*
C14 0.5488 (12) 0.0383 (4) 0.7073 (6) 0.0365 (14)
H14 0.4158 −0.0003 0.6557 0.044*
C15 0.6234 (12) 0.0133 (4) 0.8234 (6) 0.0360 (14)
H15 0.5694 −0.0490 0.8468 0.043*
C16 0.779 (5) 0.0777 (12) 0.9093 (9) 0.032 (5) 0.51 (2)
H16A 0.9165 0.0382 0.9644 0.039* 0.51 (2)
H16B 0.6429 0.1066 0.9529 0.039* 0.51 (2)
C16' 0.837 (5) 0.0637 (12) 0.9049 (10) 0.032 (5) 0.49
H16C 1.0033 0.0199 0.9266 0.039* 0.49 (2)
H16D 0.7602 0.0758 0.9753 0.039* 0.49 (2)
C17 0.9405 (10) 0.1602 (4) 0.8654 (5) 0.0253 (12)
H17A 1.1188 0.1347 0.8463 0.030*
H17B 0.9912 0.2105 0.9261 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.032 (2) 0.039 (2) 0.026 (2) 0.0098 (18) 0.0082 (17) 0.0077 (19)
O2 0.0274 (18) 0.027 (2) 0.0197 (19) 0.0025 (16) 0.0073 (16) −0.0009 (16)
O3 0.032 (2) 0.0200 (19) 0.0175 (18) −0.0002 (16) 0.0074 (16) −0.0005 (15)
N1 0.028 (2) 0.021 (2) 0.014 (2) 0.0002 (18) 0.0081 (18) 0.0006 (17)
N2 0.024 (2) 0.018 (2) 0.015 (2) 0.0027 (18) 0.0042 (19) −0.0017 (19)
N3 0.016 (2) 0.022 (2) 0.021 (2) −0.0021 (18) 0.0038 (18) −0.0020 (19)
C1 0.017 (2) 0.020 (3) 0.023 (3) −0.006 (2) 0.004 (2) −0.002 (2)
C2 0.029 (3) 0.024 (3) 0.023 (3) −0.007 (2) 0.005 (2) −0.002 (2)
C3 0.022 (3) 0.023 (3) 0.037 (3) 0.002 (2) 0.005 (3) −0.002 (3)
C4 0.027 (3) 0.022 (3) 0.026 (3) −0.003 (2) 0.011 (2) −0.008 (2)
C5 0.025 (3) 0.029 (3) 0.025 (3) −0.006 (2) 0.008 (2) −0.002 (2)
C6 0.024 (3) 0.026 (3) 0.026 (3) −0.005 (2) 0.006 (2) −0.001 (3)
C7 0.017 (3) 0.021 (3) 0.023 (3) −0.004 (2) 0.004 (2) 0.001 (2)
C8 0.025 (3) 0.021 (3) 0.017 (3) −0.002 (2) 0.005 (2) −0.001 (2)
C9 0.022 (3) 0.020 (3) 0.014 (3) −0.005 (2) 0.004 (2) 0.000 (2)
C10 0.024 (3) 0.021 (3) 0.021 (3) −0.005 (2) 0.005 (2) 0.002 (2)
C11 0.035 (3) 0.022 (3) 0.019 (2) −0.001 (2) 0.005 (2) −0.003 (2)
C12 0.021 (2) 0.021 (3) 0.024 (3) 0.003 (2) 0.004 (2) 0.001 (2)
C13 0.047 (3) 0.027 (3) 0.033 (3) −0.004 (3) −0.006 (3) −0.004 (3)
C14 0.034 (3) 0.030 (3) 0.048 (4) −0.011 (3) 0.012 (3) −0.011 (3)
C15 0.033 (3) 0.021 (3) 0.053 (4) −0.003 (3) 0.007 (3) 0.004 (3)
C16 0.014 (8) 0.029 (6) 0.055 (5) 0.013 (6) 0.008 (4) 0.012 (4)
C16' 0.014 (8) 0.029 (6) 0.055 (5) 0.013 (6) 0.008 (4) 0.012 (4)
C17 0.028 (3) 0.022 (3) 0.025 (3) −0.002 (2) 0.002 (2) 0.005 (2)

Geometric parameters (Å, º)

O1—C8 1.207 (6) C10—H10A 0.9900
O2—C9 1.210 (5) C10—H10B 0.9900
O3—C10 1.415 (6) C11—C12 1.510 (7)
O3—C11 1.435 (6) C11—H11A 0.9900
N1—C9 1.375 (6) C11—H11B 0.9900
N1—C8 1.385 (6) C12—C17 1.514 (7)
N1—H1 0.8800 C12—C13 1.543 (8)
N2—N3 1.359 (5) C12—H12 1.0000
N2—C9 1.390 (5) C13—C14 1.499 (8)
N2—C10 1.456 (6) C13—H13A 0.9900
N3—C7 1.301 (6) C13—H13B 0.9900
C1—C2 1.387 (7) C14—C15 1.390 (9)
C1—C6 1.410 (7) C14—H14 0.9500
C1—C7 1.486 (6) C15—C16' 1.435 (11)
C2—C3 1.406 (7) C15—C16 1.437 (11)
C2—H2 0.9500 C15—H15 0.9500
C3—C4 1.392 (7) C16—C17 1.521 (9)
C3—H3 0.9500 C16—H16A 0.9900
C4—C5 1.371 (7) C16—H16B 0.9900
C4—H4 0.9500 C16'—C17 1.519 (10)
C5—C6 1.391 (7) C16'—H16C 0.9900
C5—H5 0.9500 C16'—H16D 0.9900
C6—H6 0.9500 C17—H17A 0.9900
C7—C8 1.486 (6) C17—H17B 0.9900
C10—O3—C11 115.1 (3) O3—C11—H11B 109.8
C9—N1—C8 127.1 (4) C12—C11—H11B 109.8
C9—N1—H1 116.4 H11A—C11—H11B 108.3
C8—N1—H1 116.4 C11—C12—C17 112.5 (4)
N3—N2—C9 125.1 (4) C11—C12—C13 110.4 (4)
N3—N2—C10 114.1 (4) C17—C12—C13 109.5 (4)
C9—N2—C10 120.6 (4) C11—C12—H12 108.1
C7—N3—N2 120.7 (4) C17—C12—H12 108.1
C2—C1—C6 118.6 (5) C13—C12—H12 108.1
C2—C1—C7 122.8 (4) C14—C13—C12 111.9 (5)
C6—C1—C7 118.6 (4) C14—C13—H13A 109.2
C1—C2—C3 120.9 (5) C12—C13—H13A 109.2
C1—C2—H2 119.6 C14—C13—H13B 109.2
C3—C2—H2 119.6 C12—C13—H13B 109.2
C4—C3—C2 119.3 (5) H13A—C13—H13B 107.9
C4—C3—H3 120.3 C15—C14—C13 119.4 (5)
C2—C3—H3 120.3 C15—C14—H14 120.3
C5—C4—C3 120.3 (5) C13—C14—H14 120.3
C5—C4—H4 119.9 C14—C15—C16' 123.6 (6)
C3—C4—H4 119.9 C14—C15—C16 122.8 (6)
C4—C5—C6 120.7 (5) C14—C15—H15 118.6
C4—C5—H5 119.6 C16'—C15—H15 115.8
C6—C5—H5 119.6 C16—C15—H15 118.6
C5—C6—C1 120.2 (5) C15—C16—C17 116.2 (8)
C5—C6—H6 119.9 C15—C16—H16A 108.2
C1—C6—H6 119.9 C17—C16—H16A 108.2
N3—C7—C1 117.0 (4) C15—C16—H16B 108.2
N3—C7—C8 120.4 (4) C17—C16—H16B 108.2
C1—C7—C8 122.6 (4) H16A—C16—H16B 107.4
O1—C8—N1 120.0 (4) C15—C16'—C17 116.5 (8)
O1—C8—C7 126.4 (5) C15—C16'—H16C 108.2
N1—C8—C7 113.6 (4) C17—C16'—H16C 108.2
O2—C9—N1 123.3 (4) C15—C16'—H16D 108.2
O2—C9—N2 124.0 (4) C17—C16'—H16D 108.2
N1—C9—N2 112.6 (4) H16C—C16'—H16D 107.3
O3—C10—N2 111.0 (4) C16'—C17—C12 116.0 (7)
O3—C10—H10A 109.4 C16—C17—C12 109.6 (8)
N2—C10—H10A 109.4 C16'—C17—H17A 96.5
O3—C10—H10B 109.4 C16—C17—H17A 109.8
N2—C10—H10B 109.4 C12—C17—H17A 109.7
H10A—C10—H10B 108.0 C16'—C17—H17B 115.5
O3—C11—C12 109.3 (4) C16—C17—H17B 109.7
O3—C11—H11A 109.8 C12—C17—H17B 109.7
C12—C11—H11A 109.8 H17A—C17—H17B 108.2
C9—N2—N3—C7 3.3 (6) N3—N2—C9—N1 −5.5 (6)
C10—N2—N3—C7 177.7 (4) C10—N2—C9—N1 −179.5 (4)
C6—C1—C2—C3 0.4 (7) C11—O3—C10—N2 79.3 (5)
C7—C1—C2—C3 −179.8 (5) N3—N2—C10—O3 71.6 (5)
C1—C2—C3—C4 −0.4 (7) C9—N2—C10—O3 −113.8 (4)
C2—C3—C4—C5 −0.3 (8) C10—O3—C11—C12 170.0 (4)
C3—C4—C5—C6 1.0 (8) O3—C11—C12—C17 −59.4 (5)
C4—C5—C6—C1 −1.0 (7) O3—C11—C12—C13 177.9 (4)
C2—C1—C6—C5 0.3 (7) C11—C12—C13—C14 177.9 (5)
C7—C1—C6—C5 −179.5 (4) C17—C12—C13—C14 53.4 (6)
N2—N3—C7—C1 −178.5 (4) C12—C13—C14—C15 −29.4 (7)
N2—N3—C7—C8 3.3 (7) C13—C14—C15—C16' −4.5 (16)
C2—C1—C7—N3 177.0 (5) C13—C14—C15—C16 12.3 (16)
C6—C1—C7—N3 −3.2 (6) C14—C15—C16—C17 −19 (3)
C2—C1—C7—C8 −4.9 (7) C16'—C15—C16—C17 79 (3)
C6—C1—C7—C8 174.9 (4) C14—C15—C16'—C17 12 (3)
C9—N1—C8—O1 −177.0 (5) C16—C15—C16'—C17 −79 (3)
C9—N1—C8—C7 4.6 (7) C15—C16'—C17—C16 79 (3)
N3—C7—C8—O1 174.8 (5) C15—C16'—C17—C12 15 (2)
C1—C7—C8—O1 −3.2 (8) C15—C16—C17—C16' −78 (3)
N3—C7—C8—N1 −6.9 (6) C15—C16—C17—C12 43 (2)
C1—C7—C8—N1 175.1 (4) C11—C12—C17—C16' −170.4 (12)
C8—N1—C9—O2 −178.0 (5) C13—C12—C17—C16' −47.1 (12)
C8—N1—C9—N2 1.1 (7) C11—C12—C17—C16 177.0 (10)
N3—N2—C9—O2 173.6 (4) C13—C12—C17—C16 −59.8 (11)
C10—N2—C9—O2 −0.4 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.88 2.00 2.877 (5) 174
C2—H2···O1 0.95 2.21 2.880 (7) 127
C10—H10B···O2ii 0.99 2.46 3.352 (6) 150

Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2425).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Ban, K., Duffy, S., Khakham, Y., Avery, V. M., Hughes, A., Montagnat, O., Katneni, K., Ryan, E. & Baell, J. B. (2010). Bioorg. Med. Chem. Lett. 20, 6024–6029. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. El-Brollosy, N. R. (2008). Monatsh. Chem. 139, 1483–1490.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Irannejad, H., Amini, M., Khodagholi, F., Ansari, N., Tusi, S., Sharifzadeh, M. & Shafiee, A. (2010). Bioorg. Med. Chem. 18, 4224–4230. [DOI] [PubMed]
  7. Sangshetti, J. N. & Shinde, D. B. (2010). Bioorg. Med. Chem. Lett. 20, 742–745. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021198/su2425sup1.cif

e-68-o1776-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021198/su2425Isup2.hkl

e-68-o1776-Isup2.hkl (86.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021198/su2425Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES