Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1779. doi: 10.1107/S1600536812017771

2-(4-Fluoro­phen­yl)quinoxaline

Cui-Ping Wang a, Saiyong Ma a, Jiang-Long Yu a, Jing-Bo Yan a, Zhi-Qiang Zhang a,*
PMCID: PMC3379358  PMID: 22719556

Abstract

In the title compound, C14H9FN2, the dihedral angle between the benzene ring and the quinoxaline ring system is 22.2 (3)°. Any aromatic π–π stacking in the crystal must be very weak, with a minimum centroid–centroid separation of 3.995 (2) Å.

Related literature  

For background to the applications of quinoxaline derivatives, see: Lindsley et al. (2005); Dailey et al. (2001).graphic file with name e-68-o1779-scheme1.jpg

Experimental  

Crystal data  

  • C14H9FN2

  • M r = 224.23

  • Monoclinic, Inline graphic

  • a = 24.249 (13) Å

  • b = 3.7925 (19) Å

  • c = 22.609 (13) Å

  • β = 91.866 (9)°

  • V = 2078.2 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection  

  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) T min = 0.981, T max = 0.990

  • 9711 measured reflections

  • 2454 independent reflections

  • 1797 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.109

  • S = 1.01

  • 2454 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017771/hb6725sup1.cif

e-68-o1779-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017771/hb6725Isup2.hkl

e-68-o1779-Isup2.hkl (120.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017771/hb6725Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Open Fund of the Functional Material Laboratory–Key Laboratory of Liaoning Education Department (USTLKL-2011–10). The authors are indebted to Beijing Amber Tech Co. Ltd for the offer of some reagents.

supplementary crystallographic information

Comment

Quinoxaline and its derivatives are an important class of nitrogen-containing heterocycles displaying both biologial activities (Lindsley et al., 2005) and technological applications (Dailey et al., 2001). Here, we report the synthesis and crystal structure of the title compound (Fig. 1).

In the title compound, C14H9FN2, the dihedral angle between the benzene ring and the quinoxaline ring is 22.2 (3)°.

Experimental

A solution of benzene-1,2-diamine (1.5 mmol) and 2-(4-fluorophenyl)-2-oxoacetaldehyde monohydrate (1.5 mmol) in EtOH (10 ml) was stirred at room temperature for 0.5 h. After completion of the reaction (monitored by TLC or HPLC), the precipitated solid was collected by filtration and dried to afford the pure product. Or after completion of the reaction, water was added to the reaction mixture and filtered to afford the product. When necessary, the product was recrystallized from ethanol/water. Colourless prisms were grown by slow evaporation of a solution in chloroform/ethanol (1:1).

Refinement

H atoms were placed in calculated positions (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.

Crystal data

C14H9FN2 F(000) = 928
Mr = 224.23 Dx = 1.433 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 24.249 (13) Å Cell parameters from 3509 reflections
b = 3.7925 (19) Å θ = 1.7–27.9°
c = 22.609 (13) Å µ = 0.10 mm1
β = 91.866 (9)° T = 113 K
V = 2078.2 (19) Å3 Prism, colorless
Z = 8 0.20 × 0.18 × 0.10 mm

Data collection

Rigaku Saturn724 CCD diffractometer 2454 independent reflections
Radiation source: rotating anode 1797 reflections with I > 2σ(I)
Multilayer monochromator Rint = 0.032
Detector resolution: 14.22 pixels mm-1 θmax = 27.9°, θmin = 1.7°
ω and φ scans h = −31→31
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) k = −4→4
Tmin = 0.981, Tmax = 0.990 l = −29→29
9711 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0692P)2] where P = (Fo2 + 2Fc2)/3
2454 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.46580 (3) 0.67692 (19) 1.18737 (3) 0.0321 (2)
N1 0.39311 (3) 0.1470 (2) 0.93164 (4) 0.0184 (2)
N2 0.28374 (3) −0.1127 (2) 0.93193 (4) 0.0213 (2)
C1 0.36818 (4) 0.0119 (3) 0.88147 (4) 0.0182 (2)
C2 0.39774 (4) −0.0011 (3) 0.82863 (5) 0.0216 (3)
H2 0.4347 0.0813 0.8283 0.026*
C3 0.37306 (5) −0.1322 (3) 0.77801 (5) 0.0238 (3)
H3 0.3931 −0.1408 0.7426 0.029*
C4 0.31805 (5) −0.2552 (3) 0.77785 (5) 0.0246 (3)
H4 0.3013 −0.3434 0.7423 0.030*
C5 0.28877 (4) −0.2481 (3) 0.82842 (5) 0.0226 (3)
H5 0.2519 −0.3332 0.8280 0.027*
C6 0.31319 (4) −0.1147 (3) 0.88123 (5) 0.0189 (2)
C7 0.30886 (4) 0.0153 (3) 0.97928 (5) 0.0205 (2)
H7 0.2895 0.0180 1.0152 0.025*
C8 0.36398 (4) 0.1514 (3) 0.97994 (5) 0.0175 (2)
C9 0.38994 (4) 0.2927 (3) 1.03511 (4) 0.0173 (2)
C10 0.35866 (4) 0.4178 (3) 1.08148 (5) 0.0204 (3)
H10 0.3195 0.4132 1.0779 0.025*
C11 0.38416 (5) 0.5485 (3) 1.13269 (5) 0.0217 (3)
H11 0.3630 0.6352 1.1642 0.026*
C12 0.44101 (5) 0.5499 (3) 1.13683 (5) 0.0217 (3)
C13 0.47352 (4) 0.4309 (3) 1.09221 (5) 0.0220 (3)
H13 0.5126 0.4356 1.0963 0.026*
C14 0.44741 (4) 0.3042 (3) 1.04120 (5) 0.0193 (2)
H14 0.4690 0.2235 1.0096 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0308 (4) 0.0440 (5) 0.0213 (4) −0.0068 (3) −0.0033 (3) −0.0063 (3)
N1 0.0176 (4) 0.0186 (5) 0.0190 (4) −0.0001 (4) 0.0009 (3) 0.0012 (4)
N2 0.0164 (4) 0.0220 (5) 0.0256 (5) −0.0004 (4) 0.0011 (4) 0.0017 (4)
C1 0.0184 (5) 0.0157 (5) 0.0204 (5) 0.0005 (4) −0.0014 (4) 0.0015 (4)
C2 0.0208 (5) 0.0212 (6) 0.0228 (6) −0.0016 (4) 0.0017 (4) 0.0009 (4)
C3 0.0282 (6) 0.0227 (6) 0.0206 (5) 0.0005 (5) 0.0023 (4) 0.0004 (5)
C4 0.0279 (6) 0.0225 (6) 0.0229 (6) 0.0010 (5) −0.0066 (4) −0.0017 (5)
C5 0.0183 (5) 0.0208 (6) 0.0284 (6) 0.0000 (4) −0.0045 (5) −0.0002 (5)
C6 0.0180 (5) 0.0152 (5) 0.0233 (5) 0.0018 (4) −0.0011 (4) 0.0023 (4)
C7 0.0164 (5) 0.0225 (6) 0.0226 (5) −0.0002 (4) 0.0021 (4) 0.0026 (4)
C8 0.0156 (5) 0.0161 (6) 0.0207 (5) 0.0020 (4) 0.0002 (4) 0.0031 (4)
C9 0.0177 (5) 0.0159 (5) 0.0182 (5) −0.0010 (4) 0.0007 (4) 0.0034 (4)
C10 0.0163 (5) 0.0224 (6) 0.0227 (5) 0.0008 (4) 0.0022 (4) 0.0032 (4)
C11 0.0245 (5) 0.0228 (6) 0.0183 (5) 0.0011 (5) 0.0050 (4) 0.0013 (4)
C12 0.0260 (5) 0.0221 (6) 0.0169 (5) −0.0035 (4) −0.0024 (4) 0.0007 (4)
C13 0.0176 (5) 0.0247 (6) 0.0235 (5) −0.0008 (4) −0.0010 (4) 0.0018 (5)
C14 0.0176 (5) 0.0196 (6) 0.0208 (5) 0.0007 (4) 0.0027 (4) 0.0012 (4)

Geometric parameters (Å, º)

F1—C12 1.3617 (13) C5—H5 0.9500
N1—C8 1.3198 (14) C7—C8 1.4325 (15)
N1—C1 1.3676 (14) C7—H7 0.9500
N2—C7 1.3078 (15) C8—C9 1.4792 (16)
N2—C6 1.3703 (14) C9—C14 1.3966 (15)
C1—C2 1.4138 (16) C9—C10 1.3969 (15)
C1—C6 1.4171 (16) C10—C11 1.3864 (16)
C2—C3 1.3676 (16) C10—H10 0.9500
C2—H2 0.9500 C11—C12 1.3787 (17)
C3—C4 1.4131 (17) C11—H11 0.9500
C3—H3 0.9500 C12—C13 1.3764 (16)
C4—C5 1.3656 (16) C13—C14 1.3835 (15)
C4—H4 0.9500 C13—H13 0.9500
C5—C6 1.4095 (16) C14—H14 0.9500
C8—N1—C1 117.21 (9) C8—C7—H7 118.3
C7—N2—C6 116.44 (10) N1—C8—C7 120.74 (10)
N1—C1—C2 119.44 (10) N1—C8—C9 118.54 (10)
N1—C1—C6 121.36 (10) C7—C8—C9 120.71 (9)
C2—C1—C6 119.20 (10) C14—C9—C10 118.67 (10)
C3—C2—C1 119.98 (11) C14—C9—C8 119.37 (9)
C3—C2—H2 120.0 C10—C9—C8 121.96 (10)
C1—C2—H2 120.0 C11—C10—C9 120.66 (10)
C2—C3—C4 120.63 (10) C11—C10—H10 119.7
C2—C3—H3 119.7 C9—C10—H10 119.7
C4—C3—H3 119.7 C12—C11—C10 118.41 (10)
C5—C4—C3 120.52 (10) C12—C11—H11 120.8
C5—C4—H4 119.7 C10—C11—H11 120.8
C3—C4—H4 119.7 F1—C12—C13 118.89 (10)
C4—C5—C6 120.05 (10) F1—C12—C11 118.13 (10)
C4—C5—H5 120.0 C13—C12—C11 122.98 (10)
C6—C5—H5 120.0 C12—C13—C14 117.86 (10)
N2—C6—C5 119.65 (10) C12—C13—H13 121.1
N2—C6—C1 120.73 (10) C14—C13—H13 121.1
C5—C6—C1 119.61 (10) C13—C14—C9 121.40 (10)
N2—C7—C8 123.50 (10) C13—C14—H14 119.3
N2—C7—H7 118.3 C9—C14—H14 119.3
C8—N1—C1—C2 −179.57 (9) C1—N1—C8—C9 179.40 (9)
C8—N1—C1—C6 0.65 (15) N2—C7—C8—N1 −1.44 (17)
N1—C1—C2—C3 −179.32 (10) N2—C7—C8—C9 179.95 (10)
C6—C1—C2—C3 0.47 (16) N1—C8—C9—C14 −21.66 (15)
C1—C2—C3—C4 0.10 (17) C7—C8—C9—C14 156.99 (10)
C2—C3—C4—C5 −0.63 (17) N1—C8—C9—C10 157.91 (10)
C3—C4—C5—C6 0.56 (17) C7—C8—C9—C10 −23.44 (16)
C7—N2—C6—C5 −179.90 (10) C14—C9—C10—C11 −0.46 (16)
C7—N2—C6—C1 0.90 (15) C8—C9—C10—C11 179.97 (10)
C4—C5—C6—N2 −179.19 (10) C9—C10—C11—C12 −0.40 (16)
C4—C5—C6—C1 0.02 (16) C10—C11—C12—F1 −179.66 (10)
N1—C1—C6—N2 −1.55 (16) C10—C11—C12—C13 0.72 (17)
C2—C1—C6—N2 178.67 (9) F1—C12—C13—C14 −179.76 (9)
N1—C1—C6—C5 179.25 (9) C11—C12—C13—C14 −0.15 (18)
C2—C1—C6—C5 −0.53 (15) C12—C13—C14—C9 −0.76 (16)
C6—N2—C7—C8 0.53 (16) C10—C9—C14—C13 1.06 (16)
C1—N1—C8—C7 0.76 (15) C8—C9—C14—C13 −179.36 (9)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6725).

References

  1. Dailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238–2243.
  2. Lindsley, C. W., Zhao, Z., Leister, W. H., Robinson, R. G., Barnett, S. F., Defeo-Jones, D., Jones, R. E., Hartman, G. D., Hu, J. R., Huber, H. E. & Duggan, M. E. (2005). Bioorg. Med. Chem. Lett. 15, 761–764. [DOI] [PubMed]
  3. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017771/hb6725sup1.cif

e-68-o1779-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017771/hb6725Isup2.hkl

e-68-o1779-Isup2.hkl (120.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017771/hb6725Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES