Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1799–o1800. doi: 10.1107/S1600536812021903

1-{(E)-[3-(1H-Imidazol-1-yl)-1-(4-meth­oxy­phen­yl)propyl­idene]amino}-3-(2-methyl­phen­yl)urea

Mohamed I Attia a,b,, Mohamed N Aboul-Enein b, Nasser R El-Brollosy a, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3379375  PMID: 22719573

Abstract

In the title compound, C21H23N5O2, the conformation about the imine bond [1.287 (3) Å] is E. Overall, the mol­ecule has a disk shape, the dihedral angles between the imidazole ring and the meth­oxy­phenyl and methyl­phenyl rings being 49.42 (13) and 42.62 (13)°, respectively; the dihedral angle between the benzene rings is 20.11 (11)°. In the urea moiety, the N—H atoms are anti to each other and one of these forms an intra­molecular N—H⋯N hydrogen bond. In the crystal, centrosymmetric dimers are formed via N—H⋯N(imidazole) hydrogen bonds, which are connected into a three-dimensional architecture by C—H⋯O(carbon­yl) and (methyl­ene)C—H⋯π inter­actions. The crystal studied was a non-merohedral twin with a minor component of 48.3 (1)%.

Related literature  

For background to the prevalence of epilepsy and epilepsy drugs, see: Sander & Shorvon (1987); Saxena & Saxena (1995); Edafiogho & Scott (1996). For the use of aryl semicarbazones as anti-convulsants, see: Aboul-Enein et al. (2012); Dimmock et al. (1993, 1995). For a related structure, see: Attia et al. (2012).graphic file with name e-68-o1799-scheme1.jpg

Experimental  

Crystal data  

  • C21H23N5O2

  • M r = 377.44

  • Monoclinic, Inline graphic

  • a = 10.7798 (12) Å

  • b = 20.7750 (19) Å

  • c = 8.7652 (18) Å

  • β = 105.318 (15)°

  • V = 1893.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.03 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.692, T max = 1.000

  • 15110 measured reflections

  • 7494 independent reflections

  • 4657 reflections with I > 2σ(I)

  • R int = 0.080

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.216

  • S = 0.98

  • 7494 reflections

  • 263 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021903/gg2079sup1.cif

e-68-o1799-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021903/gg2079Isup2.hkl

e-68-o1799-Isup2.hkl (366.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021903/gg2079Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3 0.87 (3) 2.04 (2) 2.568 (3) 118 (2)
N2—H2n⋯N5i 0.87 (3) 2.17 (3) 3.029 (3) 171 (2)
C16—H16B⋯O1ii 0.98 2.44 3.398 (3) 165
C20—H20⋯O1i 0.95 2.51 3.226 (3) 133
C17—H17ACg2iii 0.99 2.80 3.391 (3) 119
C18—H18BCg3iv 0.99 2.78 3.569 (2) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Epilepsy is one of the most widespread pathologies of the human brain, affecting approximately 1% of world population (Sander & Shorvon, 1987). Current anti-epileptic drugs suffer from a number of disadvantages including the fact that approximately one quarter of epileptic patients have seizures that are resistant to the available medical therapy (Saxena & Saxena, 1995). Additionally, many clinically used anti-epileptic drugs cause significant side-effects which may limit their usefulness (Edafiogho & Scott, 1996). Accordingly, the evolution of novel anti-convulsants is a continuing challenge. An evaluation of the literature revealed that aryl semicarbazones were found to exhibit significant anti-convulsant activities (Aboul-Enein et al., 2012; Dimmock et al., 1995; Dimmock et al., 1993). The novel title compound, namely (2E)-2-[3-(1H-imidazol-1-yl)-1-(4-methoxphenyl)propylidene]-N-(2-methylphenyl)hydrazinecarboxamide (I) will be evaluated as anti-convulsant in experimental animal models. Herein, we describe the results of its crystal structure determination.

In (I), Fig. 1, the conformation about the N3═C9 bond [1.287 (3) Å] is E. The dihedral angles between the imidazolyl ring and the methoxy- and methyl-benzene rings are 49.42 (13) and 42.62 (13)°, respectively; the dihedral angle between the benzene rings is 20.11 (11)°. Despite these angles of inclination, overall the molecule as a disk which contrasts the flat topology in the non-methoxy species (Attia et al., 2012). The methoxy group is co-planar with the benzene ring to which it is attached as seen in the value of the C16—O2—C13—C12 torsion angle of -173.1 (2)°. Within the urea moiety, the N—H atoms are anti to each other and the N1—H forms an intramolecular N—H···N hydrogen bond to define a S(5) loop, Table 1.

In the crystal structure, centrosymmetric dimers are formed via N—H···N(imidazolyl) hydrogen bonds and 18-membered {···HNNC3NCN}2 synthons, Fig. 2 and Table 1. These aggregates are connected into a three-dimensional architecture by CH···O(carbonyl) and (methylene)C—H···π interactions, Fig. 3 and Table 1.

Experimental

Acetic acid (2 drops) was added to a stirred solution of 3-(1H-imidazol-1-yl)-1-(4-methoxyphenyl)propan-1-one (0.23 g, 1 mmol) and N-(2-methylphenyl)hydrazinecarboxamide (0.17 g, 1 mmol) in absolute ethanol (10 ml). The reaction mixture was stirred at room temperature for 18 h. The solvent was concentrated under reduced pressure and the precipitated solid was collected by filtration. The collected solid was recrystallized from ethanol to give crystals of the title compound; Mp: 363–365 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were refined freely. The crystal studied was a non-merohedral twin with the minor component being 48.3 (1)%. The (6 9 0) reflection was omitted owing to poor agreement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular dimer in (I) mediated by N—H···N hydrogen bonding, shown as blue dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents for (I). The N—H···N, C—H···O and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.

Crystal data

C21H23N5O2 F(000) = 800
Mr = 377.44 Dx = 1.324 Mg m3
Monoclinic, P21/c Melting point: 364 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 10.7798 (12) Å Cell parameters from 1904 reflections
b = 20.7750 (19) Å θ = 2.4–27.5°
c = 8.7652 (18) Å µ = 0.09 mm1
β = 105.318 (15)° T = 100 K
V = 1893.2 (5) Å3 Prism, colourless
Z = 4 0.35 × 0.15 × 0.03 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 7494 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 4657 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.080
Detector resolution: 10.4041 pixels mm-1 θmax = 27.7°, θmin = 2.6°
ω scan h = −12→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −27→27
Tmin = 0.692, Tmax = 1.000 l = −11→11
15110 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.1326P)2] where P = (Fo2 + 2Fc2)/3
7494 reflections (Δ/σ)max < 0.001
263 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.84974 (15) 0.35509 (7) 0.8918 (2) 0.0223 (4)
O2 1.35476 (15) 0.69761 (8) 0.6108 (2) 0.0274 (4)
N1 1.05626 (18) 0.39321 (9) 0.9372 (2) 0.0179 (5)
H1n 1.091 (2) 0.4294 (12) 0.919 (3) 0.024 (7)*
N2 0.88515 (19) 0.45303 (9) 0.7984 (3) 0.0192 (5)
H2n 0.803 (3) 0.4582 (11) 0.770 (3) 0.020 (7)*
N3 0.97616 (17) 0.49398 (9) 0.7705 (3) 0.0181 (4)
N4 0.61494 (17) 0.54805 (8) 0.3870 (2) 0.0166 (4)
N5 0.40525 (18) 0.53958 (9) 0.2745 (3) 0.0230 (5)
C1 1.1287 (2) 0.34837 (10) 1.0450 (3) 0.0173 (5)
C2 1.0727 (2) 0.30283 (10) 1.1230 (3) 0.0212 (5)
H2A 0.9817 0.3003 1.1018 0.025*
C3 1.1496 (2) 0.26135 (11) 1.2310 (3) 0.0261 (6)
H3 1.1111 0.2306 1.2845 0.031*
C4 1.2818 (2) 0.26431 (11) 1.2618 (3) 0.0262 (6)
H4 1.3343 0.2357 1.3360 0.031*
C5 1.3371 (2) 0.30935 (11) 1.1838 (3) 0.0249 (6)
H5 1.4281 0.3112 1.2056 0.030*
C6 1.2633 (2) 0.35195 (11) 1.0743 (3) 0.0199 (5)
C7 1.3245 (2) 0.40109 (12) 0.9928 (3) 0.0263 (6)
H7A 1.2901 0.3967 0.8780 0.040*
H7B 1.4178 0.3944 1.0214 0.040*
H7C 1.3055 0.4443 1.0255 0.040*
C8 0.9257 (2) 0.39659 (10) 0.8786 (3) 0.0172 (5)
C9 0.9418 (2) 0.54534 (9) 0.6881 (3) 0.0156 (5)
C10 1.0481 (2) 0.58629 (10) 0.6644 (3) 0.0170 (5)
C11 1.1687 (2) 0.58495 (10) 0.7738 (3) 0.0171 (5)
H11 1.1824 0.5577 0.8638 0.020*
C12 1.2674 (2) 0.62245 (11) 0.7526 (3) 0.0202 (5)
H12 1.3486 0.6212 0.8285 0.024*
C13 1.2499 (2) 0.66239 (10) 0.6209 (3) 0.0191 (5)
C14 1.1307 (2) 0.66451 (10) 0.5107 (3) 0.0206 (5)
H14 1.1175 0.6912 0.4197 0.025*
C15 1.0311 (2) 0.62687 (10) 0.5357 (3) 0.0201 (5)
H15 0.9489 0.6292 0.4620 0.024*
C16 1.3358 (2) 0.74429 (11) 0.4871 (3) 0.0291 (6)
H16A 1.4176 0.7657 0.4912 0.044*
H16B 1.2728 0.7763 0.5006 0.044*
H16C 1.3040 0.7229 0.3845 0.044*
C17 0.8032 (2) 0.56417 (10) 0.6144 (3) 0.0164 (5)
H17A 0.7981 0.6112 0.5958 0.020*
H17B 0.7510 0.5537 0.6886 0.020*
C18 0.7482 (2) 0.52920 (10) 0.4584 (3) 0.0174 (5)
H18A 0.8008 0.5393 0.3845 0.021*
H18B 0.7523 0.4822 0.4772 0.021*
C19 0.5669 (2) 0.60937 (11) 0.3609 (3) 0.0226 (6)
H19 0.6141 0.6483 0.3862 0.027*
C20 0.4397 (2) 0.60370 (11) 0.2921 (3) 0.0235 (6)
H20 0.3821 0.6388 0.2604 0.028*
C21 0.5137 (2) 0.50860 (11) 0.3321 (3) 0.0212 (6)
H21 0.5201 0.4630 0.3348 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0201 (8) 0.0256 (8) 0.0198 (10) −0.0039 (7) 0.0030 (7) 0.0045 (7)
O2 0.0192 (9) 0.0309 (9) 0.0319 (12) −0.0056 (7) 0.0066 (8) 0.0031 (8)
N1 0.0172 (10) 0.0152 (9) 0.0202 (12) −0.0024 (8) 0.0031 (9) 0.0063 (8)
N2 0.0131 (10) 0.0224 (10) 0.0207 (12) −0.0005 (8) 0.0019 (9) 0.0047 (9)
N3 0.0165 (10) 0.0220 (10) 0.0162 (11) −0.0015 (8) 0.0051 (8) −0.0004 (8)
N4 0.0145 (9) 0.0216 (9) 0.0127 (11) −0.0001 (7) 0.0020 (8) 0.0002 (8)
N5 0.0172 (10) 0.0275 (11) 0.0224 (12) 0.0039 (8) 0.0019 (9) 0.0017 (9)
C1 0.0215 (12) 0.0173 (11) 0.0106 (12) 0.0054 (9) 0.0000 (10) −0.0029 (9)
C2 0.0232 (13) 0.0213 (12) 0.0179 (14) −0.0024 (9) 0.0030 (11) −0.0015 (10)
C3 0.0367 (15) 0.0209 (12) 0.0192 (15) −0.0027 (10) 0.0050 (12) 0.0019 (10)
C4 0.0346 (14) 0.0200 (12) 0.0194 (15) 0.0101 (10) −0.0012 (12) 0.0027 (10)
C5 0.0213 (13) 0.0306 (13) 0.0198 (14) 0.0063 (10) 0.0003 (11) −0.0065 (11)
C6 0.0221 (12) 0.0229 (11) 0.0139 (13) 0.0017 (9) 0.0032 (10) −0.0041 (10)
C7 0.0155 (12) 0.0370 (14) 0.0252 (15) 0.0038 (10) 0.0031 (11) 0.0067 (12)
C8 0.0206 (12) 0.0212 (11) 0.0104 (12) −0.0026 (9) 0.0051 (10) −0.0021 (10)
C9 0.0168 (11) 0.0154 (10) 0.0136 (13) −0.0004 (9) 0.0018 (9) −0.0018 (9)
C10 0.0154 (11) 0.0184 (11) 0.0164 (13) 0.0018 (9) 0.0027 (10) −0.0051 (10)
C11 0.0203 (12) 0.0164 (10) 0.0137 (13) 0.0026 (9) 0.0029 (10) −0.0013 (9)
C12 0.0131 (11) 0.0256 (12) 0.0198 (14) 0.0044 (9) 0.0009 (10) −0.0051 (10)
C13 0.0160 (12) 0.0190 (11) 0.0236 (14) 0.0009 (9) 0.0073 (10) −0.0054 (10)
C14 0.0219 (12) 0.0206 (11) 0.0182 (14) −0.0002 (9) 0.0036 (10) 0.0028 (10)
C15 0.0148 (11) 0.0216 (11) 0.0213 (14) 0.0028 (9) 0.0000 (10) −0.0015 (10)
C16 0.0287 (14) 0.0244 (12) 0.0383 (19) −0.0028 (11) 0.0158 (13) 0.0034 (12)
C17 0.0138 (11) 0.0195 (11) 0.0161 (13) 0.0040 (8) 0.0043 (10) 0.0007 (10)
C18 0.0142 (11) 0.0203 (11) 0.0171 (13) 0.0028 (9) 0.0031 (10) −0.0008 (10)
C19 0.0221 (12) 0.0188 (11) 0.0263 (15) 0.0020 (9) 0.0050 (11) 0.0015 (11)
C20 0.0212 (13) 0.0247 (12) 0.0233 (15) 0.0077 (10) 0.0034 (11) 0.0034 (11)
C21 0.0182 (12) 0.0247 (12) 0.0189 (15) 0.0008 (9) 0.0017 (11) −0.0016 (11)

Geometric parameters (Å, º)

O1—C8 1.216 (3) C7—H7B 0.9800
O2—C13 1.369 (3) C7—H7C 0.9800
O2—C16 1.429 (3) C9—C10 1.485 (3)
N1—C8 1.366 (3) C9—C17 1.514 (3)
N1—C1 1.408 (3) C10—C15 1.381 (3)
N1—H1n 0.87 (3) C10—C11 1.397 (3)
N2—N3 1.369 (3) C11—C12 1.371 (3)
N2—C8 1.378 (3) C11—H11 0.9500
N2—H2n 0.87 (3) C12—C13 1.393 (3)
N3—C9 1.287 (3) C12—H12 0.9500
N4—C21 1.348 (3) C13—C14 1.389 (3)
N4—C19 1.371 (3) C14—C15 1.392 (3)
N4—C18 1.460 (3) C14—H14 0.9500
N5—C21 1.313 (3) C15—H15 0.9500
N5—C20 1.381 (3) C16—H16A 0.9800
C1—C2 1.394 (3) C16—H16B 0.9800
C1—C6 1.408 (3) C16—H16C 0.9800
C2—C3 1.383 (3) C17—C18 1.523 (3)
C2—H2A 0.9500 C17—H17A 0.9900
C3—C4 1.380 (4) C17—H17B 0.9900
C3—H3 0.9500 C18—H18A 0.9900
C4—C5 1.384 (4) C18—H18B 0.9900
C4—H4 0.9500 C19—C20 1.349 (3)
C5—C6 1.390 (3) C19—H19 0.9500
C5—H5 0.9500 C20—H20 0.9500
C6—C7 1.495 (3) C21—H21 0.9500
C7—H7A 0.9800
C13—O2—C16 117.18 (18) C11—C10—C9 120.3 (2)
C8—N1—C1 128.3 (2) C12—C11—C10 120.7 (2)
C8—N1—H1n 109.8 (16) C12—C11—H11 119.6
C1—N1—H1n 120.2 (17) C10—C11—H11 119.6
N3—N2—C8 118.31 (19) C11—C12—C13 120.7 (2)
N3—N2—H2n 126.9 (16) C11—C12—H12 119.6
C8—N2—H2n 114.7 (16) C13—C12—H12 119.6
C9—N3—N2 120.13 (19) O2—C13—C14 124.5 (2)
C21—N4—C19 105.71 (18) O2—C13—C12 116.0 (2)
C21—N4—C18 127.00 (18) C14—C13—C12 119.6 (2)
C19—N4—C18 127.29 (18) C13—C14—C15 118.9 (2)
C21—N5—C20 104.13 (19) C13—C14—H14 120.6
C2—C1—C6 120.4 (2) C15—C14—H14 120.6
C2—C1—N1 122.9 (2) C10—C15—C14 122.0 (2)
C6—C1—N1 116.7 (2) C10—C15—H15 119.0
C3—C2—C1 120.0 (2) C14—C15—H15 119.0
C3—C2—H2A 120.0 O2—C16—H16A 109.5
C1—C2—H2A 120.0 O2—C16—H16B 109.5
C4—C3—C2 120.5 (2) H16A—C16—H16B 109.5
C4—C3—H3 119.8 O2—C16—H16C 109.5
C2—C3—H3 119.8 H16A—C16—H16C 109.5
C3—C4—C5 119.4 (2) H16B—C16—H16C 109.5
C3—C4—H4 120.3 C9—C17—C18 111.45 (18)
C5—C4—H4 120.3 C9—C17—H17A 109.3
C4—C5—C6 122.0 (2) C18—C17—H17A 109.3
C4—C5—H5 119.0 C9—C17—H17B 109.3
C6—C5—H5 119.0 C18—C17—H17B 109.3
C5—C6—C1 117.8 (2) H17A—C17—H17B 108.0
C5—C6—C7 121.4 (2) N4—C18—C17 111.24 (18)
C1—C6—C7 120.8 (2) N4—C18—H18A 109.4
C6—C7—H7A 109.5 C17—C18—H18A 109.4
C6—C7—H7B 109.5 N4—C18—H18B 109.4
H7A—C7—H7B 109.5 C17—C18—H18B 109.4
C6—C7—H7C 109.5 H18A—C18—H18B 108.0
H7A—C7—H7C 109.5 C20—C19—N4 106.7 (2)
H7B—C7—H7C 109.5 C20—C19—H19 126.6
O1—C8—N1 125.5 (2) N4—C19—H19 126.6
O1—C8—N2 121.4 (2) C19—C20—N5 110.2 (2)
N1—C8—N2 113.09 (19) C19—C20—H20 124.9
N3—C9—C10 115.8 (2) N5—C20—H20 124.9
N3—C9—C17 124.0 (2) N5—C21—N4 113.2 (2)
C10—C9—C17 120.22 (19) N5—C21—H21 123.4
C15—C10—C11 118.1 (2) N4—C21—H21 123.4
C15—C10—C9 121.5 (2)
C8—N2—N3—C9 176.0 (2) C15—C10—C11—C12 −0.7 (3)
C8—N1—C1—C2 −7.1 (4) C9—C10—C11—C12 179.8 (2)
C8—N1—C1—C6 174.0 (2) C10—C11—C12—C13 −0.5 (3)
C6—C1—C2—C3 0.8 (4) C16—O2—C13—C14 6.7 (3)
N1—C1—C2—C3 −178.1 (2) C16—O2—C13—C12 −173.1 (2)
C1—C2—C3—C4 −0.5 (4) C11—C12—C13—O2 −179.7 (2)
C2—C3—C4—C5 0.2 (4) C11—C12—C13—C14 0.5 (3)
C3—C4—C5—C6 −0.1 (4) O2—C13—C14—C15 −179.2 (2)
C4—C5—C6—C1 0.4 (4) C12—C13—C14—C15 0.6 (3)
C4—C5—C6—C7 179.0 (2) C11—C10—C15—C14 1.8 (3)
C2—C1—C6—C5 −0.7 (3) C9—C10—C15—C14 −178.7 (2)
N1—C1—C6—C5 178.2 (2) C13—C14—C15—C10 −1.8 (4)
C2—C1—C6—C7 −179.3 (2) N3—C9—C17—C18 −81.8 (3)
N1—C1—C6—C7 −0.3 (3) C10—C9—C17—C18 96.8 (2)
C1—N1—C8—O1 −11.9 (4) C21—N4—C18—C17 −130.0 (2)
C1—N1—C8—N2 168.7 (2) C19—N4—C18—C17 50.5 (3)
N3—N2—C8—O1 −171.8 (2) C9—C17—C18—N4 −179.38 (18)
N3—N2—C8—N1 7.6 (3) C21—N4—C19—C20 0.1 (3)
N2—N3—C9—C10 −179.8 (2) C18—N4—C19—C20 179.7 (2)
N2—N3—C9—C17 −1.1 (4) N4—C19—C20—N5 0.3 (3)
N3—C9—C10—C15 154.6 (2) C21—N5—C20—C19 −0.6 (3)
C17—C9—C10—C15 −24.1 (3) C20—N5—C21—N4 0.7 (3)
N3—C9—C10—C11 −25.8 (3) C19—N4—C21—N5 −0.5 (3)
C17—C9—C10—C11 155.4 (2) C18—N4—C21—N5 179.9 (2)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1n···N3 0.87 (3) 2.04 (2) 2.568 (3) 118 (2)
N2—H2n···N5i 0.87 (3) 2.17 (3) 3.029 (3) 171 (2)
C16—H16B···O1ii 0.98 2.44 3.398 (3) 165
C20—H20···O1i 0.95 2.51 3.226 (3) 133
C17—H17A···Cg2iii 0.99 2.80 3.391 (3) 119
C18—H18B···Cg3iv 0.99 2.78 3.569 (2) 137

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+2, −y+1, −z+2; (iv) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2079).

References

  1. Aboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Maklad, Y. A., Amin, K. M., Abdel-Rehim, M. & El-Behairy, M. F. (2012). Eur. J. Med. Chem. 47, 360–369. [DOI] [PubMed]
  2. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  3. Attia, M. I., Aboul-Enein, M. N., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1848–o1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Dimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Duffy, M. S. & Reid, R. S. (1993). J. Med. Chem. 36, 2243–2252. [DOI] [PubMed]
  6. Dimmock, J. R., Sidhu, K. K., Tumber, S. D., Basran, S. K., Chen, M. & Quail, J. W. (1995). Eur. J. Med. Chem. 30, 287–301.
  7. Edafiogho, I. O. & Scott, K. R. (1996). Burgers Medicinal Chemistry and Drug Discovery, edited by M. E. Wolf, p. 175. New York: John Wiley and Sons Inc.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Sander, J. W. A. S. & Shorvon, S. D. (1987). J. Neurol. Neurosurg. Psychiatry, 50, 829–839. [DOI] [PMC free article] [PubMed]
  10. Saxena, A. K. & Saxena, M. (1995). Prog. Drug Res. 44, 185–291. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021903/gg2079sup1.cif

e-68-o1799-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021903/gg2079Isup2.hkl

e-68-o1799-Isup2.hkl (366.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021903/gg2079Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES