Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1807. doi: 10.1107/S1600536812021794

3-Benzyl-8-meth­oxy-2-sulfanyl­idene-1,2,3,4-tetra­hydro­quinazolin-4-one

Rashad Al-Salahi a, Mohamed Al-Omar a, Mohamed Marzouk a, Seik Weng Ng b,c,*
PMCID: PMC3379381  PMID: 22719579

Abstract

The tetra­hydro­quinazole fused-ring system of the title compound, C16H14N2O2S, is roughly planar (r.m.s. deviation = 0.039 Å); the phenyl ring of the benzyl substituent is aligned at 78.1 (1)° with respect to the mean plane of the fused-ring system. In the crystal, two mol­ecules are linked by a pair of N—H⋯S hydrogen bonds about a center of inversion, generating a dimer.

Related literature  

For the synthesis, see: Al-Omar et al. (2004).graphic file with name e-68-o1807-scheme1.jpg

Experimental  

Crystal data  

  • C16H14N2O2S

  • M r = 298.35

  • Triclinic, Inline graphic

  • a = 6.3025 (5) Å

  • b = 10.8353 (5) Å

  • c = 11.0144 (7) Å

  • α = 101.728 (5)°

  • β = 102.419 (6)°

  • γ = 101.693 (5)°

  • V = 694.95 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.12 mm−1

  • T = 294 K

  • 0.40 × 0.30 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.484, T max = 0.676

  • 11149 measured reflections

  • 2888 independent reflections

  • 2714 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.114

  • S = 1.06

  • 2888 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021794/bt5918sup1.cif

e-68-o1807-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021794/bt5918Isup2.hkl

e-68-o1807-Isup2.hkl (141.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021794/bt5918Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.87 (1) 2.63 (1) 3.493 (1) 174 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Research Center of the College of Pharmacy College and Deanship of Scientific Research of King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

supplementary crystallographic information

Comment

The compound (Scheme I) was previously synthesized for a study of its antimicrobial activity. The background to this class of compounds is discussed (Al-Omar et al., 2004). The tetrahydroquinazole fused-ring of C16H14N2O2S is flat; the phenyl ring of the benzyl substituent is aligned at 78.1 (1) ° with respect to the fused-ring (Fig. 1). Two molecules are linked by an N–H···S hydrogen bond about a center of inversion to generate a dimer (Table 1).

Experimental

Benzyl isothiocyanate (10 mmol, 1.35 g), 2-amino-3-methoxybenzoic acid (10 mmol,1.67 g) and triethylamine (5 mmol, 0.51 g) in ethanol (30 ml) was heated under reflux for two hours. After cooling, the mixture was poured into ice-cold water. The resulting solid was filtered, washed with water and dried. Recrystallization from ethanol gave colorless crystals.

Refinement

All H-atoms were located in a difference Fourier map. Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was refined isotropically with a distance restraint of N–H 0.88±0.01 Å.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C16H14N2O2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C16H14N2O2S Z = 2
Mr = 298.35 F(000) = 312
Triclinic, P1 Dx = 1.426 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 6.3025 (5) Å Cell parameters from 6739 reflections
b = 10.8353 (5) Å θ = 4.3–76.5°
c = 11.0144 (7) Å µ = 2.12 mm1
α = 101.728 (5)° T = 294 K
β = 102.419 (6)° Prism, colorless
γ = 101.693 (5)° 0.40 × 0.30 × 0.20 mm
V = 694.95 (8) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2888 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2714 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.026
Detector resolution: 10.4041 pixels mm-1 θmax = 76.7°, θmin = 4.3°
ω scan h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −13→13
Tmin = 0.484, Tmax = 0.676 l = −13→13
11149 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.1365P] where P = (Fo2 + 2Fc2)/3
2888 reflections (Δ/σ)max = 0.001
195 parameters Δρmax = 0.22 e Å3
1 restraint Δρmin = −0.40 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.84360 (6) 1.04442 (3) 0.64336 (3) 0.04455 (15)
O1 0.15151 (18) 0.69504 (12) 0.56998 (12) 0.0543 (3)
O2 0.8326 (2) 0.67738 (11) 0.27822 (11) 0.0509 (3)
N1 0.7112 (2) 0.81847 (12) 0.46983 (11) 0.0376 (3)
H1 0.829 (2) 0.8501 (18) 0.4456 (18) 0.051 (5)*
N2 0.47878 (18) 0.84651 (11) 0.60456 (11) 0.0355 (3)
C1 0.3257 (2) 0.72495 (14) 0.53999 (14) 0.0400 (3)
C2 0.3924 (2) 0.64174 (14) 0.44134 (13) 0.0388 (3)
C3 0.2672 (3) 0.51250 (15) 0.38286 (15) 0.0471 (3)
H3 0.1396 0.4778 0.4067 0.057*
C4 0.3356 (3) 0.43832 (15) 0.29020 (17) 0.0518 (4)
H4 0.2549 0.3520 0.2525 0.062*
C5 0.5233 (3) 0.48904 (16) 0.25080 (16) 0.0485 (4)
H5 0.5643 0.4374 0.1860 0.058*
C6 0.6480 (3) 0.61582 (14) 0.30800 (13) 0.0408 (3)
C7 0.5842 (2) 0.69243 (13) 0.40631 (13) 0.0363 (3)
C8 0.6691 (2) 0.89590 (13) 0.56926 (12) 0.0345 (3)
C9 0.8974 (3) 0.60835 (19) 0.17369 (17) 0.0571 (4)
H9A 1.0333 0.6606 0.1652 0.086*
H9B 0.7802 0.5900 0.0957 0.086*
H9C 0.9225 0.5279 0.1897 0.086*
C10 0.4113 (2) 0.92622 (14) 0.70865 (14) 0.0397 (3)
H10A 0.2568 0.9289 0.6768 0.048*
H10B 0.5053 1.0148 0.7331 0.048*
C11 0.4320 (2) 0.87257 (13) 0.82580 (13) 0.0401 (3)
C12 0.6395 (3) 0.88228 (16) 0.90532 (16) 0.0501 (4)
H12 0.7699 0.9204 0.8860 0.060*
C13 0.6537 (4) 0.8349 (2) 1.01459 (18) 0.0662 (5)
H13 0.7937 0.8417 1.0682 0.079*
C14 0.4613 (5) 0.77823 (19) 1.04350 (18) 0.0698 (6)
H14 0.4714 0.7466 1.1164 0.084*
C15 0.2558 (4) 0.76845 (19) 0.96517 (19) 0.0666 (5)
H15 0.1258 0.7299 0.9846 0.080*
C16 0.2402 (3) 0.81568 (17) 0.85676 (16) 0.0524 (4)
H16 0.0994 0.8091 0.8041 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0432 (2) 0.0386 (2) 0.0452 (2) −0.00269 (15) 0.01814 (16) 0.00262 (15)
O1 0.0405 (6) 0.0597 (7) 0.0568 (7) −0.0045 (5) 0.0229 (5) 0.0089 (5)
O2 0.0567 (7) 0.0465 (6) 0.0483 (6) 0.0031 (5) 0.0278 (5) 0.0052 (5)
N1 0.0370 (6) 0.0377 (6) 0.0364 (6) 0.0019 (5) 0.0151 (5) 0.0081 (5)
N2 0.0347 (6) 0.0383 (6) 0.0344 (6) 0.0057 (4) 0.0133 (4) 0.0109 (4)
C1 0.0357 (7) 0.0444 (8) 0.0375 (7) 0.0020 (6) 0.0101 (5) 0.0133 (6)
C2 0.0385 (7) 0.0392 (7) 0.0358 (7) 0.0029 (5) 0.0093 (5) 0.0112 (5)
C3 0.0429 (8) 0.0429 (8) 0.0493 (8) −0.0027 (6) 0.0117 (6) 0.0124 (6)
C4 0.0542 (9) 0.0365 (7) 0.0540 (9) −0.0016 (6) 0.0102 (7) 0.0059 (6)
C5 0.0572 (9) 0.0399 (7) 0.0443 (8) 0.0088 (6) 0.0140 (7) 0.0046 (6)
C6 0.0451 (7) 0.0410 (7) 0.0359 (7) 0.0069 (6) 0.0130 (6) 0.0109 (6)
C7 0.0381 (7) 0.0356 (6) 0.0329 (6) 0.0042 (5) 0.0086 (5) 0.0103 (5)
C8 0.0341 (6) 0.0378 (6) 0.0322 (6) 0.0060 (5) 0.0102 (5) 0.0125 (5)
C9 0.0654 (10) 0.0620 (10) 0.0522 (9) 0.0205 (8) 0.0308 (8) 0.0125 (8)
C10 0.0408 (7) 0.0401 (7) 0.0436 (7) 0.0107 (6) 0.0197 (6) 0.0131 (6)
C11 0.0488 (8) 0.0365 (7) 0.0373 (7) 0.0100 (6) 0.0194 (6) 0.0073 (5)
C12 0.0569 (9) 0.0475 (8) 0.0447 (8) 0.0141 (7) 0.0152 (7) 0.0070 (6)
C13 0.0895 (14) 0.0593 (10) 0.0468 (9) 0.0304 (10) 0.0055 (9) 0.0092 (8)
C14 0.1235 (19) 0.0547 (10) 0.0453 (9) 0.0316 (11) 0.0372 (11) 0.0198 (8)
C15 0.0951 (15) 0.0585 (10) 0.0608 (11) 0.0161 (10) 0.0477 (11) 0.0228 (9)
C16 0.0576 (9) 0.0531 (9) 0.0520 (9) 0.0094 (7) 0.0291 (7) 0.0149 (7)

Geometric parameters (Å, º)

S1—C8 1.6818 (14) C6—C7 1.407 (2)
O1—C1 1.2141 (18) C9—H9A 0.9600
O2—C6 1.3582 (18) C9—H9B 0.9600
O2—C9 1.4241 (19) C9—H9C 0.9600
N1—C8 1.3475 (18) C10—C11 1.5110 (19)
N1—C7 1.3867 (18) C10—H10A 0.9700
N1—H1 0.868 (9) C10—H10B 0.9700
N2—C8 1.3787 (17) C11—C12 1.379 (2)
N2—C1 1.4074 (18) C11—C16 1.385 (2)
N2—C10 1.4822 (17) C12—C13 1.394 (3)
C1—C2 1.457 (2) C12—H12 0.9300
C2—C7 1.3888 (19) C13—C14 1.376 (3)
C2—C3 1.402 (2) C13—H13 0.9300
C3—C4 1.367 (2) C14—C15 1.364 (3)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.394 (2) C15—C16 1.384 (2)
C4—H4 0.9300 C15—H15 0.9300
C5—C6 1.378 (2) C16—H16 0.9300
C5—H5 0.9300
C6—O2—C9 117.68 (13) O2—C9—H9A 109.5
C8—N1—C7 124.75 (12) O2—C9—H9B 109.5
C8—N1—H1 116.9 (14) H9A—C9—H9B 109.5
C7—N1—H1 118.4 (14) O2—C9—H9C 109.5
C8—N2—C1 123.99 (12) H9A—C9—H9C 109.5
C8—N2—C10 120.75 (11) H9B—C9—H9C 109.5
C1—N2—C10 115.03 (11) N2—C10—C11 112.13 (11)
O1—C1—N2 119.33 (14) N2—C10—H10A 109.2
O1—C1—C2 124.39 (13) C11—C10—H10A 109.2
N2—C1—C2 116.28 (12) N2—C10—H10B 109.2
C7—C2—C3 120.22 (14) C11—C10—H10B 109.2
C7—C2—C1 118.79 (12) H10A—C10—H10B 107.9
C3—C2—C1 120.99 (13) C12—C11—C16 118.91 (14)
C4—C3—C2 118.92 (14) C12—C11—C10 121.20 (13)
C4—C3—H3 120.5 C16—C11—C10 119.87 (14)
C2—C3—H3 120.5 C11—C12—C13 120.01 (18)
C3—C4—C5 121.60 (14) C11—C12—H12 120.0
C3—C4—H4 119.2 C13—C12—H12 120.0
C5—C4—H4 119.2 C14—C13—C12 120.3 (2)
C6—C5—C4 119.91 (15) C14—C13—H13 119.9
C6—C5—H5 120.0 C12—C13—H13 119.9
C4—C5—H5 120.0 C15—C14—C13 119.94 (17)
O2—C6—C5 125.90 (14) C15—C14—H14 120.0
O2—C6—C7 114.79 (12) C13—C14—H14 120.0
C5—C6—C7 119.31 (14) C14—C15—C16 120.18 (19)
N1—C7—C2 119.13 (13) C14—C15—H15 119.9
N1—C7—C6 120.88 (12) C16—C15—H15 119.9
C2—C7—C6 119.99 (13) C15—C16—C11 120.70 (18)
N1—C8—N2 116.47 (12) C15—C16—H16 119.6
N1—C8—S1 120.25 (10) C11—C16—H16 119.6
N2—C8—S1 123.28 (10)
C8—N2—C1—O1 −172.81 (13) O2—C6—C7—N1 −3.0 (2)
C10—N2—C1—O1 1.76 (19) C5—C6—C7—N1 177.19 (13)
C8—N2—C1—C2 8.29 (19) O2—C6—C7—C2 177.30 (12)
C10—N2—C1—C2 −177.14 (11) C5—C6—C7—C2 −2.5 (2)
O1—C1—C2—C7 173.21 (14) C7—N1—C8—N2 −3.3 (2)
N2—C1—C2—C7 −7.96 (19) C7—N1—C8—S1 176.82 (10)
O1—C1—C2—C3 −7.2 (2) C1—N2—C8—N1 −2.82 (19)
N2—C1—C2—C3 171.67 (12) C10—N2—C8—N1 −177.09 (11)
C7—C2—C3—C4 −0.8 (2) C1—N2—C8—S1 177.03 (10)
C1—C2—C3—C4 179.61 (14) C10—N2—C8—S1 2.76 (18)
C2—C3—C4—C5 −1.4 (3) C8—N2—C10—C11 −112.55 (14)
C3—C4—C5—C6 1.7 (3) C1—N2—C10—C11 72.68 (15)
C9—O2—C6—C5 3.9 (2) N2—C10—C11—C12 72.02 (17)
C9—O2—C6—C7 −175.88 (14) N2—C10—C11—C16 −109.81 (15)
C4—C5—C6—O2 −179.43 (14) C16—C11—C12—C13 0.2 (2)
C4—C5—C6—C7 0.3 (2) C10—C11—C12—C13 178.36 (14)
C8—N1—C7—C2 3.3 (2) C11—C12—C13—C14 0.1 (3)
C8—N1—C7—C6 −176.38 (12) C12—C13—C14—C15 −0.1 (3)
C3—C2—C7—N1 −176.96 (12) C13—C14—C15—C16 −0.1 (3)
C1—C2—C7—N1 2.7 (2) C14—C15—C16—C11 0.4 (3)
C3—C2—C7—C6 2.7 (2) C12—C11—C16—C15 −0.4 (2)
C1—C2—C7—C6 −177.66 (12) C10—C11—C16—C15 −178.65 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.87 (1) 2.63 (1) 3.493 (1) 174 (2)

Symmetry code: (i) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5918).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Al-Omar, M. A., Abdel-Hamide, S. G., Al-Khamees, H. A. & El-Subbagh, H. I. (2004). Saudi Pharm. J. 12, 63–71.
  3. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021794/bt5918sup1.cif

e-68-o1807-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021794/bt5918Isup2.hkl

e-68-o1807-Isup2.hkl (141.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021794/bt5918Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES