Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1810. doi: 10.1107/S1600536812021800

3-(Prop-2-en-1-yl)-2-sulfanyl­idene-1,2,3,4-tetra­hydro­quinazolin-4-one

Rashad Al-Salahi a, Mohamed Al-Omar a, Mohamed Marzouk a, Seik Weng Ng b,c,*
PMCID: PMC3379384  PMID: 22719582

Abstract

The tetra­hydro­quinazoline fused-ring system of the title compound, C11H10N2OS, is approximately planar (r.m.s. deviation = 0.019 Å). In the crystal, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds, forming a chain running along the b axis.

Related literature  

For the synthesis, see: Shiau et al. (1990); Vassilev & Vassilev (2007).graphic file with name e-68-o1810-scheme1.jpg

Experimental  

Crystal data  

  • C11H10N2OS

  • M r = 218.27

  • Monoclinic, Inline graphic

  • a = 8.9823 (3) Å

  • b = 13.7271 (3) Å

  • c = 8.3137 (2) Å

  • β = 92.882 (3)°

  • V = 1023.79 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.59 mm−1

  • T = 294 K

  • 0.30 × 0.30 × 0.03 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.511, T max = 0.927

  • 4913 measured reflections

  • 2128 independent reflections

  • 1855 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.108

  • S = 1.06

  • 2128 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021800/bt5919sup1.cif

e-68-o1810-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021800/bt5919Isup2.hkl

e-68-o1810-Isup2.hkl (104.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021800/bt5919Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 2.15 (1) 2.977 (2) 160 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Research Center of the College of Pharmacy College and Deanship of Scientific Research of King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

supplementary crystallographic information

Comment

The compound, 3-benzyl-8-methoxy-2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one, was previously synthesized for a study of its antimicrobial activity. The related 2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one (Scheme I) exhibits cytokinin activity (Vassilev & Vassilev, 2007). The synthesis described in the present study is a more straightforward procedure than those previously reported (Shiau et al., 1990; Vassilev & Vassilev, 2007). The tetrahydroquinazoline fused-ring of C11H10N2OS is planar (Fig. 1). Adjacent molecules are linked by an N–H···O hydrogen to form a chain running along the b-axis of the monoclinic unit cell (Table 1).

Experimental

Allyl isothiocyanate (10 mmol, 0.99 g), 2-amino-5-methylbenzoic acid (10 mmol, 1.51 g) and triethylamine (5 mmol, 0.51 g) in ethanol (30 ml) was heated for two hours. The mixture was poured into ice-cold water. The solid was collected and recrystallized from ethanol to give colorless crystals.

Refinement

All H-atom were located in a difference Fourier map. Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was refined isotropically with a distance restraint of N–H 0.88±0.01 Å.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C11H10N2OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Hydrogen-bond chain structure.

Crystal data

C11H10N2OS F(000) = 456
Mr = 218.27 Dx = 1.416 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 2303 reflections
a = 8.9823 (3) Å θ = 3.2–76.4°
b = 13.7271 (3) Å µ = 2.59 mm1
c = 8.3137 (2) Å T = 294 K
β = 92.882 (3)° Prism, colorless
V = 1023.79 (5) Å3 0.30 × 0.30 × 0.03 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2128 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 1855 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.023
Detector resolution: 10.4041 pixels mm-1 θmax = 76.6°, θmin = 5.9°
ω scan h = −11→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −17→10
Tmin = 0.511, Tmax = 0.927 l = −10→8
4913 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.1451P] where P = (Fo2 + 2Fc2)/3
2128 reflections (Δ/σ)max = 0.001
140 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.38 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.77201 (5) 0.32274 (3) 0.07911 (5) 0.04374 (16)
O1 0.54446 (14) 0.00715 (8) 0.22169 (16) 0.0488 (3)
N1 0.53208 (14) 0.29760 (9) 0.24120 (16) 0.0337 (3)
H1 0.530 (2) 0.3608 (7) 0.239 (2) 0.052 (6)*
N2 0.64135 (14) 0.15416 (9) 0.15732 (15) 0.0317 (3)
C1 0.64308 (17) 0.25505 (10) 0.16333 (17) 0.0317 (3)
C2 0.53764 (17) 0.09571 (11) 0.23320 (18) 0.0341 (3)
C3 0.42514 (16) 0.14680 (11) 0.32027 (18) 0.0320 (3)
C4 0.31809 (19) 0.09589 (12) 0.4035 (2) 0.0404 (4)
H4 0.3200 0.0282 0.4068 0.048*
C5 0.2099 (2) 0.14630 (14) 0.4804 (2) 0.0458 (4)
H5 0.1379 0.1125 0.5345 0.055*
C6 0.20775 (19) 0.24781 (14) 0.4776 (2) 0.0445 (4)
H6 0.1339 0.2813 0.5293 0.053*
C7 0.3140 (2) 0.29896 (11) 0.3990 (2) 0.0393 (4)
H7 0.3127 0.3667 0.3982 0.047*
C8 0.42342 (16) 0.24836 (11) 0.32063 (17) 0.0311 (3)
C9 0.76129 (18) 0.10324 (12) 0.07515 (18) 0.0376 (4)
H9A 0.7907 0.1420 −0.0155 0.045*
H9B 0.7242 0.0412 0.0340 0.045*
C10 0.89456 (19) 0.08610 (13) 0.1881 (2) 0.0433 (4)
H10 0.9300 0.1382 0.2505 0.052*
C11 0.9639 (2) 0.00289 (15) 0.2043 (3) 0.0568 (5)
H11A 0.9313 −0.0506 0.1436 0.068*
H11B 1.0459 −0.0029 0.2765 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0415 (3) 0.0325 (2) 0.0586 (3) −0.00599 (15) 0.01623 (19) 0.00349 (16)
O1 0.0559 (7) 0.0207 (5) 0.0712 (8) −0.0015 (5) 0.0180 (6) −0.0008 (5)
N1 0.0363 (7) 0.0203 (6) 0.0448 (7) 0.0004 (5) 0.0068 (6) 0.0020 (5)
N2 0.0324 (6) 0.0236 (6) 0.0393 (6) 0.0015 (5) 0.0055 (5) −0.0004 (5)
C1 0.0328 (7) 0.0252 (6) 0.0369 (7) −0.0002 (5) 0.0014 (6) 0.0009 (5)
C2 0.0358 (8) 0.0252 (7) 0.0414 (8) −0.0004 (6) 0.0014 (6) 0.0025 (6)
C3 0.0319 (7) 0.0254 (7) 0.0387 (7) −0.0019 (6) 0.0015 (6) 0.0016 (5)
C4 0.0406 (9) 0.0305 (7) 0.0505 (9) −0.0053 (6) 0.0072 (7) 0.0044 (6)
C5 0.0414 (9) 0.0461 (9) 0.0511 (9) −0.0086 (7) 0.0141 (7) 0.0039 (7)
C6 0.0383 (9) 0.0460 (9) 0.0502 (9) 0.0042 (7) 0.0124 (7) −0.0006 (7)
C7 0.0407 (9) 0.0301 (7) 0.0477 (9) 0.0047 (6) 0.0086 (7) 0.0007 (6)
C8 0.0308 (7) 0.0265 (7) 0.0358 (7) 0.0001 (5) 0.0009 (6) 0.0020 (5)
C9 0.0408 (9) 0.0316 (8) 0.0413 (8) 0.0052 (6) 0.0103 (7) −0.0015 (6)
C10 0.0382 (8) 0.0422 (9) 0.0502 (9) 0.0042 (7) 0.0092 (7) −0.0025 (7)
C11 0.0431 (10) 0.0497 (10) 0.0774 (13) 0.0049 (8) 0.0004 (9) 0.0047 (9)

Geometric parameters (Å, º)

S1—C1 1.6663 (15) C5—C6 1.394 (3)
O1—C2 1.2212 (18) C5—H5 0.9300
N1—C1 1.3487 (19) C6—C7 1.376 (2)
N1—C8 1.3822 (19) C6—H6 0.9300
N1—H1 0.869 (9) C7—C8 1.392 (2)
N2—C1 1.3858 (17) C7—H7 0.9300
N2—C2 1.4031 (19) C9—C10 1.502 (2)
N2—C9 1.4799 (18) C9—H9A 0.9700
C2—C3 1.453 (2) C9—H9B 0.9700
C3—C8 1.394 (2) C10—C11 1.305 (3)
C3—C4 1.399 (2) C10—H10 0.9300
C4—C5 1.377 (2) C11—H11A 0.9300
C4—H4 0.9300 C11—H11B 0.9300
C1—N1—C8 125.05 (13) C7—C6—C5 120.60 (15)
C1—N1—H1 116.1 (14) C7—C6—H6 119.7
C8—N1—H1 118.8 (14) C5—C6—H6 119.7
C1—N2—C2 124.18 (12) C6—C7—C8 119.37 (15)
C1—N2—C9 118.79 (12) C6—C7—H7 120.3
C2—N2—C9 116.91 (12) C8—C7—H7 120.3
N1—C1—N2 116.28 (13) N1—C8—C7 120.78 (14)
N1—C1—S1 120.42 (11) N1—C8—C3 118.67 (13)
N2—C1—S1 123.29 (11) C7—C8—C3 120.55 (14)
O1—C2—N2 119.80 (14) N2—C9—C10 111.18 (12)
O1—C2—C3 123.95 (14) N2—C9—H9A 109.4
N2—C2—C3 116.24 (13) C10—C9—H9A 109.4
C8—C3—C4 119.36 (14) N2—C9—H9B 109.4
C8—C3—C2 119.46 (13) C10—C9—H9B 109.4
C4—C3—C2 121.18 (14) H9A—C9—H9B 108.0
C5—C4—C3 119.84 (15) C11—C10—C9 124.25 (18)
C5—C4—H4 120.1 C11—C10—H10 117.9
C3—C4—H4 120.1 C9—C10—H10 117.9
C4—C5—C6 120.25 (15) C10—C11—H11A 120.0
C4—C5—H5 119.9 C10—C11—H11B 120.0
C6—C5—H5 119.9 H11A—C11—H11B 120.0
C8—N1—C1—N2 3.4 (2) C2—C3—C4—C5 −177.85 (15)
C8—N1—C1—S1 −177.21 (12) C3—C4—C5—C6 −0.9 (3)
C2—N2—C1—N1 −3.4 (2) C4—C5—C6—C7 −0.4 (3)
C9—N2—C1—N1 −179.29 (13) C5—C6—C7—C8 0.6 (3)
C2—N2—C1—S1 177.16 (11) C1—N1—C8—C7 179.38 (14)
C9—N2—C1—S1 1.30 (19) C1—N1—C8—C3 −0.9 (2)
C1—N2—C2—O1 −179.93 (14) C6—C7—C8—N1 −179.70 (15)
C9—N2—C2—O1 −4.0 (2) C6—C7—C8—C3 0.5 (2)
C1—N2—C2—C3 1.0 (2) C4—C3—C8—N1 178.43 (14)
C9—N2—C2—C3 176.97 (12) C2—C3—C8—N1 −1.7 (2)
O1—C2—C3—C8 −177.37 (15) C4—C3—C8—C7 −1.8 (2)
N2—C2—C3—C8 1.6 (2) C2—C3—C8—C7 178.01 (14)
O1—C2—C3—C4 2.4 (2) C1—N2—C9—C10 86.69 (17)
N2—C2—C3—C4 −178.57 (14) C2—N2—C9—C10 −89.46 (16)
C8—C3—C4—C5 2.0 (2) N2—C9—C10—C11 132.15 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.87 (1) 2.15 (1) 2.977 (2) 160 (2)

Symmetry code: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5919).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Shiau, C. Y., Chern, J. W., Liu, K. C., Chan, C. H., Yen, M. H., Cheng, M. C. & Wang, Y. (1990). J. Heterocycl. Chem. 27, 1467–1472.
  5. Vassilev, G. N. & Vassilev, N. G. (2007). Oxid. Commun. 30, 228–235.
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021800/bt5919sup1.cif

e-68-o1810-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021800/bt5919Isup2.hkl

e-68-o1810-Isup2.hkl (104.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021800/bt5919Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES