Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1814. doi: 10.1107/S1600536812020624

4,5-Dibromo-2,7-di-tert-butyl-9,9-dimethyl-9H-thioxanthene

Omayra H Rubio a, Angel L Fuentes de Arriba a, Francisca Sanz b, Francisco M Muniz c, Joaquín R Morán a,*
PMCID: PMC3379388  PMID: 22719586

Abstract

In the title compound, C23H28Br2S, the thioxanthene unit is twisted, showing a dihedral angle of 29.3 (5)° between the benzene rings. When projected along [001], the packing shows two types of channels. The crystal studied was a racemic twin.

Related literature  

For the preparation, see: Emslie et al. (2006). For the use of the title compound as a starting material in the preparation of rigid ligands for different transition metals, see: Emslie et al. (2008).graphic file with name e-68-o1814-scheme1.jpg

Experimental  

Crystal data  

  • C23H28Br2S

  • M r = 496.33

  • Tetragonal, Inline graphic

  • a = 21.8234 (2) Å

  • c = 18.8025 (5) Å

  • V = 8954.9 (3) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 5.48 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.08 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.544, T max = 0.645

  • 26972 measured reflections

  • 3272 independent reflections

  • 3038 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.114

  • S = 1.08

  • 3272 reflections

  • 243 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.83 e Å−3

  • Absolute structure: Flack (1983), 2739 Friedel pairs

  • Flack parameter: 0.49 (3)

Data collection: APEX2 (Bruker 2006); cell refinement: SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020624/ng5262sup1.cif

e-68-o1814-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020624/ng5262Isup2.hkl

e-68-o1814-Isup2.hkl (160.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020624/ng5262Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Spanish Dirección General de Investigación, Ciencia y Tecnología (DGI–CYT; CTQ2010–19906/BQU) and the Junta de Castilla y León (SA223A11–2) for their support of this work. The Spanish Ministerio de Educación (MEC) is acknowledged for a fellowship to ALFA.

supplementary crystallographic information

Comment

Thioxanthenes are very valuable building blocks for several purposes. Specifically, the compound described in this paper has been used as a starting material in the preparation of rigid ligands for different transitions metals as Ni, Pd, Fe, etc (Emslie et al., 2008).

The crystal contains an unique molecule as the asymmetric unit. The molecule consists of a thioxanthene framework with a tert-butyl group at C2 and C8, two methyl groups at C5 and a bromine atom at C10 and C13 as susbtituents.The thioxanthene core is twisted with a torsion angle of 29.3 (5)° (C11—S1—C12—C4). All the bond lengths and angles are within the normal ranges. The S1—C11 and S1—C12 bond lengths are 1.751 (5) Å and 1.769 (5) Å, and the C11—S1—C12 angle are 99.5 (2)°. The bromine atoms are coplanar with the thioxanthene framework; the Br1—C13—C1—C2 and Br2—C10—C9—C8 torsion angles are 179.8 (2)° and -179.8 (9)°, respectively.

The molecules in the cell unit are orientated in opposite directions forming parallel sheets along the a and b axes, which intersect perpendicularly originating two types of channels A and B, as is shown in Fig. 2 and 3.

Experimental

The title compound was obtained from thioxanthone according to a method described previously (Emslie et al., 2006). Thioxanthone reacted with AlMe3 to gave 9,9-dimethylthioxanthene. This compound (0.75 g, 3.31 mmol) was mixed with 2-chloro-2-methylpropane (1.04 ml, 9.56 mmol) in chloroform (18 ml) at 273 K and aluminium trichloride (0.26 g, 1.95 mmol) was added in a Friedel-Crafts procedure. Reaction of this compound (0.57 g, 1.68 mmol) with bromine (0.34 ml, 6.64 mmol) in a mixture of glacial acetic acid (6.8 ml) and dichloromethane (3 ml) gave 2,7-di-tert-butyl-4,5-dibromo-9,9-dimethylthioxanthene. Crystals were obtained from a dichloromethane solution and their characterization was in agreement with the reported data.

Refinement

The hydrogen atoms were positioned geometrically, with C—H distances constrained to 0.93 Å (aromatic CH) and 0.96 Å (methyl CH3) and refined in riding mode with Uiso(H) = xUeq(C), where x =1.5 for methyl H atoms and x = 1.2 for all other atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of C23H28Br2S. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing of C23H28Br2S view along c-axis, showing two kind of channels.

Fig. 3.

Fig. 3.

Crystal packing showed in Figure 2 moved along x axis.

Crystal data

C23H28Br2S Dx = 1.473 Mg m3
Mr = 496.33 Cu Kα radiation, λ = 1.54178 Å
Tetragonal, I41cd Cell parameters from 6340 reflections
Hall symbol: I 4bw -2c θ = 4.1–65.0°
a = 21.8234 (2) Å µ = 5.48 mm1
c = 18.8025 (5) Å T = 298 K
V = 8954.9 (3) Å3 Prism, brown
Z = 16 0.12 × 0.10 × 0.08 mm
F(000) = 4032

Data collection

Bruker APEXII CCD area-detector diffractometer 3272 independent reflections
Radiation source: fine-focus sealed tube 3038 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
phi and ω scans θmax = 67.1°, θmin = 4.1°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −24→24
Tmin = 0.544, Tmax = 0.645 k = −25→24
26972 measured reflections l = −21→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.069P)2 + 8.551P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3272 reflections Δρmax = 0.34 e Å3
243 parameters Δρmin = −0.83 e Å3
1 restraint Absolute structure: Flack (1983), 2739 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.49 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.00721 (3) 0.08500 (2) 0.15791 (4) 0.0637 (2)
Br2 −0.01257 (4) 0.08030 (3) 0.44522 (4) 0.0759 (3)
S1 0.01309 (5) 0.15662 (5) 0.30465 (9) 0.0469 (3)
C1 −0.0512 (2) 0.1937 (2) 0.1083 (2) 0.0399 (10)
H1 −0.0539 0.1723 0.0657 0.048*
C2 −0.07413 (19) 0.2520 (2) 0.1132 (3) 0.0397 (10)
C3 −0.0652 (2) 0.2836 (2) 0.1773 (3) 0.0396 (10)
H3 −0.0796 0.3235 0.1808 0.048*
C4 −0.03594 (19) 0.25826 (19) 0.2354 (3) 0.0351 (9)
C5 −0.0220 (2) 0.29427 (18) 0.3048 (3) 0.0414 (9)
C6 −0.0430 (2) 0.2563 (2) 0.3677 (2) 0.0377 (10)
C7 −0.07826 (19) 0.2811 (2) 0.4233 (3) 0.0416 (10)
H7 −0.0916 0.3214 0.4192 0.050*
C8 −0.0943 (2) 0.2484 (2) 0.4845 (3) 0.0417 (10)
C9 −0.0731 (2) 0.1878 (2) 0.4897 (3) 0.0463 (11)
H9 −0.0815 0.1645 0.5299 0.056*
C10 −0.0395 (2) 0.1630 (2) 0.4339 (3) 0.0442 (11)
C11 −0.02527 (19) 0.1948 (2) 0.3734 (3) 0.0393 (10)
C12 −0.0171 (2) 0.1968 (2) 0.2308 (3) 0.0384 (10)
C13 −0.02398 (19) 0.1666 (2) 0.1671 (3) 0.0416 (10)
C14 −0.1076 (2) 0.2842 (2) 0.0513 (3) 0.0436 (9)
C15 −0.1193 (3) 0.2409 (3) −0.0107 (3) 0.0638 (15)
H15A −0.1418 0.2621 −0.0471 0.096*
H15B −0.1427 0.2064 0.0055 0.096*
H15C −0.0809 0.2270 −0.0296 0.096*
C16 −0.0707 (3) 0.3385 (3) 0.0251 (3) 0.0598 (15)
H16A −0.0629 0.3659 0.0640 0.090*
H16B −0.0933 0.3596 −0.0113 0.090*
H16C −0.0324 0.3244 0.0059 0.090*
C17 −0.1701 (2) 0.3078 (3) 0.0782 (3) 0.0581 (14)
H17A −0.1639 0.3342 0.1184 0.087*
H17B −0.1951 0.2736 0.0921 0.087*
H17C −0.1902 0.3302 0.0410 0.087*
C18 0.0481 (2) 0.3047 (2) 0.3083 (3) 0.0550 (12)
H18A 0.0577 0.3303 0.3483 0.083*
H18B 0.0616 0.3243 0.2654 0.083*
H18C 0.0686 0.2660 0.3134 0.083*
C19 −0.0520 (3) 0.35770 (19) 0.3027 (4) 0.0557 (12)
H19A −0.0956 0.3532 0.2975 0.084*
H19B −0.0361 0.3805 0.2632 0.084*
H19C −0.0433 0.3791 0.3461 0.084*
C20 −0.1332 (2) 0.2772 (3) 0.5422 (3) 0.0521 (13)
C21 −0.1930 (3) 0.3015 (4) 0.5106 (4) 0.080 (2)
H21A −0.2188 0.3164 0.5482 0.119*
H21B −0.2136 0.2691 0.4857 0.119*
H21C −0.1841 0.3343 0.4782 0.119*
C22 −0.0982 (3) 0.3323 (4) 0.5735 (5) 0.093 (3)
H22A −0.0622 0.3180 0.5977 0.140*
H22B −0.1241 0.3537 0.6065 0.140*
H22C −0.0865 0.3596 0.5358 0.140*
C23 −0.1493 (4) 0.2334 (4) 0.6019 (4) 0.091 (2)
H23A −0.1132 0.2244 0.6291 0.136*
H23B −0.1655 0.1962 0.5823 0.136*
H23C −0.1795 0.2520 0.6322 0.136*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0755 (4) 0.0508 (3) 0.0647 (5) 0.0202 (2) −0.0148 (4) −0.0147 (3)
Br2 0.1107 (6) 0.0513 (3) 0.0655 (5) 0.0278 (3) −0.0034 (5) 0.0074 (3)
S1 0.0510 (6) 0.0474 (5) 0.0423 (6) 0.0192 (4) −0.0057 (7) −0.0050 (6)
C1 0.045 (2) 0.046 (2) 0.029 (2) −0.0015 (18) −0.0009 (19) −0.0120 (19)
C2 0.035 (2) 0.045 (2) 0.039 (3) 0.0011 (16) 0.0009 (19) 0.001 (2)
C3 0.044 (2) 0.036 (2) 0.039 (3) 0.0047 (17) 0.002 (2) −0.0038 (18)
C4 0.036 (2) 0.036 (2) 0.033 (2) −0.0014 (16) −0.0028 (17) −0.0045 (19)
C5 0.049 (2) 0.0350 (19) 0.040 (2) −0.0015 (15) 0.000 (2) −0.008 (2)
C6 0.040 (2) 0.038 (2) 0.035 (2) 0.0025 (16) −0.0108 (19) −0.0035 (18)
C7 0.044 (2) 0.038 (2) 0.043 (3) 0.0067 (16) −0.005 (2) −0.006 (2)
C8 0.039 (2) 0.049 (2) 0.037 (3) 0.0031 (18) −0.0048 (18) −0.003 (2)
C9 0.052 (3) 0.044 (2) 0.043 (3) −0.0006 (19) −0.007 (2) −0.002 (2)
C10 0.050 (2) 0.038 (2) 0.045 (3) 0.0033 (18) −0.009 (2) 0.002 (2)
C11 0.035 (2) 0.043 (2) 0.039 (3) 0.0047 (17) −0.0084 (19) −0.008 (2)
C12 0.037 (2) 0.043 (2) 0.035 (3) 0.0047 (17) −0.0027 (19) −0.005 (2)
C13 0.040 (2) 0.036 (2) 0.049 (3) 0.0064 (16) 0.002 (2) −0.005 (2)
C14 0.048 (2) 0.048 (2) 0.035 (2) 0.0067 (18) 0.000 (3) −0.001 (2)
C15 0.082 (4) 0.067 (3) 0.042 (3) 0.023 (3) −0.015 (3) −0.010 (3)
C16 0.063 (3) 0.069 (4) 0.048 (3) 0.010 (3) 0.005 (3) 0.013 (3)
C17 0.043 (3) 0.088 (4) 0.043 (3) 0.016 (3) 0.001 (2) −0.001 (3)
C18 0.055 (3) 0.059 (3) 0.051 (3) −0.012 (2) −0.012 (3) −0.004 (3)
C19 0.084 (3) 0.034 (2) 0.048 (3) 0.009 (2) −0.001 (3) −0.006 (3)
C20 0.049 (2) 0.063 (3) 0.044 (3) 0.011 (2) 0.009 (2) −0.006 (2)
C21 0.061 (4) 0.099 (5) 0.078 (5) 0.027 (3) 0.011 (3) 0.007 (4)
C22 0.086 (5) 0.103 (5) 0.091 (6) −0.004 (4) 0.021 (4) −0.059 (5)
C23 0.103 (5) 0.102 (5) 0.066 (4) 0.035 (5) 0.030 (4) 0.010 (4)

Geometric parameters (Å, º)

Br1—C13 1.915 (4) C14—C17 1.543 (6)
Br2—C10 1.909 (4) C15—H15A 0.9600
S1—C11 1.751 (5) C15—H15B 0.9600
S1—C12 1.769 (5) C15—H15C 0.9600
C1—C2 1.371 (7) C16—H16A 0.9600
C1—C13 1.386 (7) C16—H16B 0.9600
C1—H1 0.9300 C16—H16C 0.9600
C2—C3 1.402 (7) C17—H17A 0.9600
C2—C14 1.544 (7) C17—H17B 0.9600
C3—C4 1.381 (7) C17—H17C 0.9600
C3—H3 0.9300 C18—H18A 0.9600
C4—C12 1.406 (7) C18—H18B 0.9600
C4—C5 1.553 (7) C18—H18C 0.9600
C5—C6 1.515 (7) C19—H19A 0.9600
C5—C19 1.532 (6) C19—H19B 0.9600
C5—C18 1.549 (6) C19—H19C 0.9600
C6—C11 1.400 (7) C20—C23 1.515 (10)
C6—C7 1.406 (7) C20—C21 1.529 (8)
C7—C8 1.397 (7) C20—C22 1.542 (9)
C7—H7 0.9300 C21—H21A 0.9600
C8—C9 1.405 (7) C21—H21B 0.9600
C8—C20 1.514 (7) C21—H21C 0.9600
C9—C10 1.389 (7) C22—H22A 0.9600
C9—H9 0.9300 C22—H22B 0.9600
C10—C11 1.369 (7) C22—H22C 0.9600
C12—C13 1.376 (7) C23—H23A 0.9600
C14—C16 1.516 (8) C23—H23B 0.9600
C14—C15 1.522 (8) C23—H23C 0.9600
C11—S1—C12 99.5 (2) C14—C15—H15C 109.5
C2—C1—C13 119.9 (4) H15A—C15—H15C 109.5
C2—C1—H1 120.0 H15B—C15—H15C 109.5
C13—C1—H1 120.0 C14—C16—H16A 109.5
C1—C2—C3 117.6 (4) C14—C16—H16B 109.5
C1—C2—C14 123.0 (4) H16A—C16—H16B 109.5
C3—C2—C14 119.4 (4) C14—C16—H16C 109.5
C4—C3—C2 123.3 (4) H16A—C16—H16C 109.5
C4—C3—H3 118.4 H16B—C16—H16C 109.5
C2—C3—H3 118.4 C14—C17—H17A 109.5
C3—C4—C12 117.9 (4) C14—C17—H17B 109.5
C3—C4—C5 123.6 (4) H17A—C17—H17B 109.5
C12—C4—C5 118.5 (4) C14—C17—H17C 109.5
C6—C5—C19 112.7 (4) H17A—C17—H17C 109.5
C6—C5—C18 110.3 (4) H17B—C17—H17C 109.5
C19—C5—C18 106.9 (4) C5—C18—H18A 109.5
C6—C5—C4 108.6 (3) C5—C18—H18B 109.5
C19—C5—C4 110.6 (4) H18A—C18—H18B 109.5
C18—C5—C4 107.7 (4) C5—C18—H18C 109.5
C11—C6—C7 117.5 (4) H18A—C18—H18C 109.5
C11—C6—C5 120.0 (4) H18B—C18—H18C 109.5
C7—C6—C5 122.4 (4) C5—C19—H19A 109.5
C8—C7—C6 123.6 (4) C5—C19—H19B 109.5
C8—C7—H7 118.2 H19A—C19—H19B 109.5
C6—C7—H7 118.2 C5—C19—H19C 109.5
C7—C8—C9 117.0 (4) H19A—C19—H19C 109.5
C7—C8—C20 121.3 (4) H19B—C19—H19C 109.5
C9—C8—C20 121.7 (5) C8—C20—C23 113.6 (5)
C10—C9—C8 119.3 (5) C8—C20—C21 110.1 (5)
C10—C9—H9 120.4 C23—C20—C21 108.0 (5)
C8—C9—H9 120.4 C8—C20—C22 108.6 (5)
C11—C10—C9 123.3 (4) C23—C20—C22 108.9 (6)
C11—C10—Br2 120.2 (4) C21—C20—C22 107.5 (6)
C9—C10—Br2 116.5 (4) C20—C21—H21A 109.5
C10—C11—C6 119.2 (4) C20—C21—H21B 109.5
C10—C11—S1 118.7 (4) H21A—C21—H21B 109.5
C6—C11—S1 122.1 (4) C20—C21—H21C 109.5
C13—C12—C4 118.6 (4) H21A—C21—H21C 109.5
C13—C12—S1 119.2 (3) H21B—C21—H21C 109.5
C4—C12—S1 122.2 (4) C20—C22—H22A 109.5
C12—C13—C1 122.5 (4) C20—C22—H22B 109.5
C12—C13—Br1 119.0 (3) H22A—C22—H22B 109.5
C1—C13—Br1 118.5 (4) C20—C22—H22C 109.5
C16—C14—C15 109.0 (5) H22A—C22—H22C 109.5
C16—C14—C17 108.4 (4) H22B—C22—H22C 109.5
C15—C14—C17 108.1 (4) C20—C23—H23A 109.5
C16—C14—C2 110.4 (4) C20—C23—H23B 109.5
C15—C14—C2 112.0 (4) H23A—C23—H23B 109.5
C17—C14—C2 108.8 (4) C20—C23—H23C 109.5
C14—C15—H15A 109.5 H23A—C23—H23C 109.5
C14—C15—H15B 109.5 H23B—C23—H23C 109.5
H15A—C15—H15B 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5262).

References

  1. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Emslie, D. J. H., Blackwell, J. M., Britten, J. F. & Harrington, L. E. (2006). Organometallics, 25, 2412–2414.
  3. Emslie, D. J. H., Harrington, L. E., Jenkins, H. A., Robertson, C. M. & Britten, J. F. (2008). Organometallics, 27, 5317–5325.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020624/ng5262sup1.cif

e-68-o1814-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020624/ng5262Isup2.hkl

e-68-o1814-Isup2.hkl (160.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020624/ng5262Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES