Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1827. doi: 10.1107/S1600536812022283

2-Methyl-2-(3-nitro­phen­yl)-1,3-dithiane

Pavla Mirošová a, Marek Nečas b, Robert Vícha a,*
PMCID: PMC3379401  PMID: 22719599

Abstract

The title compound, C11H13NO2S2, contains a 1,3-dithiane ring in an almost ideal chair conformation with the following puckering parameters: Q = 0.7252 (15) Å, θ = 6.71 (13) and ϕ = 50.4 (11)°. The benzene ring occupies an axial position at the dithiane ring. The nitro group is almost coplanar with the benzene ring [O—N—C—C = −3.2 (2)°]. The mol­ecule has an L-shape with a C—C—C—C torsion angle of −74.15 (17)° for the atoms of the methyl group and the dithiane–benzene linkage. The crystal packing is stabilized only via weak non-specific van der Waals inter­actions.

Related literature  

For the preparation of the title compound, see Vícha et al. (2011). For crystallographic data for similar aryl-substituted 1,3-dithia­nes, see: Fun et al. (2009a ,b ); Samas et al. (2010). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o1827-scheme1.jpg

Experimental  

Crystal data  

  • C11H13NO2S2

  • M r = 255.36

  • Orthorhombic, Inline graphic

  • a = 13.5388 (3) Å

  • b = 7.2660 (1) Å

  • c = 24.1083 (4) Å

  • V = 2371.60 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.30 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.899, T max = 1.000

  • 25370 measured reflections

  • 2086 independent reflections

  • 1871 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.074

  • S = 1.08

  • 2086 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022283/nk2160sup1.cif

e-68-o1827-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022283/nk2160Isup2.hkl

e-68-o1827-Isup2.hkl (102.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022283/nk2160Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support of this work by the Inter­nal Founding Agency of Tomas Bata University in Zlin project No. IGA/FT/2012/016 is gratefully acknowledged.

supplementary crystallographic information

Comment

The six- and five-membered 1,3-disulfur rings are frequently used in organic synthesis as efficient protecting groups for carbonyl moiety. Additionally, these compounds are intermediate stage in the carbonyl-to-methylene transformation process. We have used title compound as a model target for optimization of the selective desulfurization procedure (Vícha et al., 2011). Surprisingly, title compound has not been described in the literature yet (to the best of our knowledge).

The benzene ring (C1–C6) is essentially planar with the maximum deviation from the best plane of 0.0071 (15) Å for C4. The torsion angles C11—C7—C3—C4 and C2—C1—N1—O1 describing mutual orientation of nitro group, benzene ring and dithiane ring are -74.15 (17) and -3.2 (2)°, respectively. The dithiane ring adopts almost ideal chair conformation with the Cremer and Pople puckering parameters Q = 0.7252 (15) Å, θ= 6.71 (13)°, φ= 50.4 (11)°. Remarkably, the less bulky methyl substituent occupies the equatorial position at C7. This may be demonstrated by the torsion angle C11—C7—S2—C10 which is of -172.63 (10)°. Furthermore, the C1—C2 edge of the benzene ring is slightly turned over the dithiane ring. The dihedral angle between the benzene best plane (C1–C6) and the imaginary mirror plane of dithiane ring (calculated as the best plane of C3, C7, C9 and C11) is 77.25 (4)°.

Experimental

The title compound was prepared from corresponding 1-(3-nitrophenyl)ethan-1-one and propan-1,3-dithiol as it was published previously (Vícha et al., 2011). The crude material was crystallized from hexane to yield pale yellow crystals (89%). The single-crystal used for data collection was obtained via slow evaporation of chloroform from solution of the title compound at room temperature. NMR, IR and MS spectra are listed in the _exptl_special_details section of the CIF.

Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition,the methyl H atoms were allowed to rotate about the C—C bond.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit with atoms represented as 50% probability ellipsoids. H atoms are shown as small spheres at arbitrary radii.

Crystal data

C11H13NO2S2 Dx = 1.430 Mg m3
Mr = 255.36 Melting point: 350 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 29781 reflections
a = 13.5388 (3) Å θ = 2.9–27.1°
b = 7.2660 (1) Å µ = 0.43 mm1
c = 24.1083 (4) Å T = 120 K
V = 2371.60 (7) Å3 Block, yellow
Z = 8 0.40 × 0.40 × 0.30 mm
F(000) = 1072

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer 2086 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1871 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
Detector resolution: 8.4353 pixels mm-1 θmax = 25.0°, θmin = 3.3°
ω scan h = −16→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −8→8
Tmin = 0.899, Tmax = 1.000 l = −28→28
25370 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.7194P] where P = (Fo2 + 2Fc2)/3
2086 reflections (Δ/σ)max = 0.001
145 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Experimental. Spectral properties of title compound: IR (KBr disc): 3075 (w), 2964 (w), 2937 (w), 2897 (w), 2856 (w), 2825 (w),1574 (w), 1524 (s), 1468 (w), 1422 (m), 1346 (s), 1305 (w), 1283 (w), 1274 (w), 1252 (w), 1193 (w), 1166 (w), 1095 (m), 1065 (w), 1048 (w), 997 (w), 929 (w), 903 (m), 895 (m), 870 (w), 805 (s), 761 (w), 738 (s), 688 (s), 626 (s), 564 (w), 540 (w), 486 (w) cm-1. 1H NMR (300 MHz; CDCl3): δ 2.75 (s, 3H); 1.94–2.62 (m, 2H); 2.63–2.82 (m, 4H); 7.57 (t, 1H); 8.13–8.16 (m, 1H); 8.31–8.35 (m, 1H); 8.84–8.85 (m, 1H) ppm. 13C NMR (75.5 MHz; CDCl3): δ 24.5 (CH2); 28.3 (CH2); 33.0 (CH3); 53.3 (C); 122.5 (CH); 123.4 (CH); 129.8 (CH); 134.4 (CH); 147.0 (C);149.0 (C) ppm. MS (EI, 70 eV): 41 (13); 45 (13); 46 (21); 51 (9); 59 (32); 73 (15); 74 (100); 75 (10); 76 (10); 77 (14); 91 (15); 102 (14); 103 (6); 105 (9); 120 (16); 133 (5); 134 (14); 135 (5); 148 (13); 166 (36); 181 (39); 182 (6); 240 (7); 255 (47); 256 (7) m/z (%).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.42653 (3) 0.06433 (6) 0.318872 (16) 0.02260 (13)
S2 0.34860 (3) 0.31750 (6) 0.406194 (17) 0.02437 (13)
O1 0.78844 (9) 0.06238 (18) 0.31090 (5) 0.0316 (3)
O2 0.88864 (8) 0.19994 (18) 0.36717 (6) 0.0351 (3)
N1 0.80521 (10) 0.15222 (19) 0.35301 (6) 0.0237 (3)
C1 0.72158 (11) 0.2054 (2) 0.38863 (6) 0.0193 (3)
C2 0.62711 (12) 0.1592 (2) 0.37124 (6) 0.0178 (3)
H2A 0.6174 0.0953 0.3373 0.021*
C3 0.54695 (11) 0.2075 (2) 0.40399 (6) 0.0169 (3)
C4 0.56495 (12) 0.3022 (2) 0.45353 (7) 0.0211 (3)
H4A 0.5108 0.3381 0.4761 0.025*
C5 0.66055 (13) 0.3445 (2) 0.47029 (7) 0.0241 (4)
H5A 0.6710 0.4072 0.5044 0.029*
C6 0.74045 (12) 0.2961 (2) 0.43775 (6) 0.0222 (4)
H6A 0.8061 0.3244 0.4488 0.027*
C7 0.44172 (11) 0.1432 (2) 0.39012 (6) 0.0186 (3)
C8 0.44276 (12) 0.2773 (3) 0.28100 (7) 0.0277 (4)
H8A 0.5094 0.3267 0.2890 0.033*
H8B 0.4394 0.2507 0.2408 0.033*
C9 0.36643 (13) 0.4236 (3) 0.29500 (8) 0.0315 (4)
H9A 0.3746 0.5290 0.2694 0.038*
H9B 0.2995 0.3722 0.2892 0.038*
C10 0.37475 (13) 0.4923 (2) 0.35432 (8) 0.0299 (4)
H10A 0.3283 0.5961 0.3595 0.036*
H10B 0.4424 0.5397 0.3604 0.036*
C11 0.41696 (13) −0.0232 (2) 0.42694 (7) 0.0265 (4)
H11A 0.4648 −0.1218 0.4201 0.040*
H11B 0.3503 −0.0672 0.4182 0.040*
H11C 0.4199 0.0134 0.4660 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0192 (2) 0.0278 (2) 0.0209 (2) −0.00284 (16) −0.00093 (15) −0.00663 (16)
S2 0.0173 (2) 0.0303 (2) 0.0255 (2) 0.00491 (17) 0.00228 (16) −0.00487 (17)
O1 0.0243 (7) 0.0412 (7) 0.0293 (6) −0.0001 (6) 0.0060 (5) −0.0056 (6)
O2 0.0139 (6) 0.0411 (8) 0.0503 (8) −0.0024 (5) −0.0002 (6) 0.0003 (6)
N1 0.0170 (7) 0.0241 (7) 0.0299 (8) 0.0003 (6) 0.0011 (6) 0.0070 (6)
C1 0.0177 (8) 0.0162 (7) 0.0239 (8) 0.0014 (6) 0.0012 (6) 0.0044 (6)
C2 0.0191 (8) 0.0168 (7) 0.0176 (7) 0.0003 (6) −0.0018 (6) 0.0009 (6)
C3 0.0180 (8) 0.0159 (7) 0.0169 (7) 0.0003 (6) −0.0009 (6) 0.0028 (6)
C4 0.0233 (8) 0.0196 (8) 0.0204 (8) 0.0002 (7) 0.0016 (6) 0.0004 (6)
C5 0.0300 (9) 0.0212 (8) 0.0210 (8) −0.0035 (7) −0.0061 (7) −0.0007 (6)
C6 0.0200 (8) 0.0192 (8) 0.0275 (8) −0.0044 (7) −0.0070 (7) 0.0056 (6)
C7 0.0161 (8) 0.0220 (8) 0.0177 (7) 0.0005 (6) 0.0012 (6) −0.0018 (6)
C8 0.0229 (9) 0.0414 (10) 0.0189 (8) −0.0022 (8) −0.0021 (7) 0.0043 (7)
C9 0.0233 (9) 0.0390 (10) 0.0323 (9) 0.0005 (8) −0.0048 (8) 0.0118 (8)
C10 0.0227 (9) 0.0245 (9) 0.0426 (10) 0.0038 (7) −0.0017 (8) 0.0016 (8)
C11 0.0205 (8) 0.0296 (9) 0.0294 (9) −0.0057 (7) 0.0004 (7) 0.0044 (7)

Geometric parameters (Å, º)

S1—C8 1.8098 (18) C5—C6 1.382 (2)
S1—C7 1.8224 (15) C5—H5A 0.9500
S2—C10 1.8171 (19) C6—H6A 0.9500
S2—C7 1.8285 (16) C7—C11 1.537 (2)
O1—N1 1.2282 (18) C8—C9 1.521 (3)
O2—N1 1.2298 (18) C8—H8A 0.9900
N1—C1 1.473 (2) C8—H8B 0.9900
C1—C6 1.379 (2) C9—C10 1.519 (3)
C1—C2 1.387 (2) C9—H9A 0.9900
C2—C3 1.387 (2) C9—H9B 0.9900
C2—H2A 0.9500 C10—H10A 0.9900
C3—C4 1.399 (2) C10—H10B 0.9900
C3—C7 1.536 (2) C11—H11A 0.9800
C4—C5 1.390 (2) C11—H11B 0.9800
C4—H4A 0.9500 C11—H11C 0.9800
C8—S1—C7 101.13 (8) C11—C7—S2 105.78 (11)
C10—S2—C7 101.75 (8) S1—C7—S2 109.86 (8)
O1—N1—O2 123.30 (14) C9—C8—S1 113.79 (12)
O1—N1—C1 118.64 (13) C9—C8—H8A 108.8
O2—N1—C1 118.06 (14) S1—C8—H8A 108.8
C6—C1—C2 123.08 (15) C9—C8—H8B 108.8
C6—C1—N1 118.92 (14) S1—C8—H8B 108.8
C2—C1—N1 117.99 (14) H8A—C8—H8B 107.7
C1—C2—C3 119.22 (14) C10—C9—C8 112.84 (14)
C1—C2—H2A 120.4 C10—C9—H9A 109.0
C3—C2—H2A 120.4 C8—C9—H9A 109.0
C2—C3—C4 118.28 (14) C10—C9—H9B 109.0
C2—C3—C7 121.65 (13) C8—C9—H9B 109.0
C4—C3—C7 119.78 (14) H9A—C9—H9B 107.8
C5—C4—C3 121.25 (15) C9—C10—S2 113.85 (13)
C5—C4—H4A 119.4 C9—C10—H10A 108.8
C3—C4—H4A 119.4 S2—C10—H10A 108.8
C6—C5—C4 120.50 (15) C9—C10—H10B 108.8
C6—C5—H5A 119.8 S2—C10—H10B 108.8
C4—C5—H5A 119.8 H10A—C10—H10B 107.7
C1—C6—C5 117.65 (15) C7—C11—H11A 109.5
C1—C6—H6A 121.2 C7—C11—H11B 109.5
C5—C6—H6A 121.2 H11A—C11—H11B 109.5
C3—C7—C11 108.41 (13) C7—C11—H11C 109.5
C3—C7—S1 113.92 (10) H11A—C11—H11C 109.5
C11—C7—S1 105.81 (11) H11B—C11—H11C 109.5
C3—C7—S2 112.50 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2160).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009a). Acta Cryst. E65, o347. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009b). Acta Cryst. E65, o348. [DOI] [PMC free article] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Samas, B., Préville, C., Thuma, B. A. & Mascitti, V. (2010). Acta Cryst. E66, o1386. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Vícha, R., Rouchal, M., Kozubková, Z., Kuřitka, I., Marek, R., Branná, P. & Čmelík, R. (2011). Supramol. Chem. 23, 663–677.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022283/nk2160sup1.cif

e-68-o1827-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022283/nk2160Isup2.hkl

e-68-o1827-Isup2.hkl (102.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022283/nk2160Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES