Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1829–o1830. doi: 10.1107/S1600536812021526

3-Ethenyl-1-(4-methyl­phenyl­sulfon­yl)-1H-indole

Julio Zukerman-Schpector a,*, Glaudeston D Wulf a, Hélio A Stefani b, Stanley N S Vasconcelos b, Seik Weng Ng c,d, Edward R T Tiekink c
PMCID: PMC3379403  PMID: 22719601

Abstract

Two independent but very similar mol­ecules comprise the asymmetric unit of the title compound, C17H15NO2S. The mol­ecules have L-shapes with the dihedral angles between the fused-ring system (r.m.s. deviations = 0.036 and 0.019 Å, respectively) and the benzene ring being almost the same, i.e. 82.98 (12) and 84.46 (13)°, respectively. The terminal ethenyl group is almost coplanar with the ring to which it is connected [C—C—C—C torsion angles = −173.7 (4) and −171.7 (4)°, respectively]. Supra­molecular arrays parallel to (-124) stabilized by C—H⋯O and C—H⋯π inter­actions feature in the crystal packing.

Related literature  

For background to the biological activity of indole­amine 2,3-di­oxy­genase and inhibitors, see: Rohrig et al. (2010); Munn & Mellor (2007); Muller et al. (2005). For related structures, see: Seshadri et al. (2002); Senthil Kumar et al. (2006); Chakkaravarthi et al. (2008).graphic file with name e-68-o1829-scheme1.jpg

Experimental  

Crystal data  

  • C17H15NO2S

  • M r = 297.37

  • Triclinic, Inline graphic

  • a = 9.8809 (4) Å

  • b = 10.0167 (3) Å

  • c = 15.5280 (5) Å

  • α = 83.687 (3)°

  • β = 77.864 (3)°

  • γ = 88.769 (3)°

  • V = 1493.41 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Agilent SuperNova (Dual, Cu at zero) diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.548, T max = 0.641

  • 11566 measured reflections

  • 6103 independent reflections

  • 5505 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.185

  • S = 1.02

  • 6103 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021526/hg5227sup1.cif

e-68-o1829-sup1.cif (27.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021526/hg5227Isup2.hkl

e-68-o1829-Isup2.hkl (298.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021526/hg5227Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2–C25 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.95 2.50 3.433 (4) 166
C20—H20⋯O2ii 0.95 2.52 3.373 (5) 149
C25—H25⋯O4iii 0.95 2.48 3.406 (4) 166
C30—H30⋯Cg1iv 0.95 2.77 3.617 (4) 149
C34—H34CCg2v 0.98 2.95 3.525 (4) 119
C12—H12⋯Cg3v 0.95 2.87 3.739 (3) 153
C15—H15⋯Cg3v 0.95 2.86 3.638 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We thank the Brazilian agencies: FAPESP (07/59404–2 to HAS), CNPq (300613/2007–5 to HAS and 306532/2009–3 to JZS) and CAPES (808/2009 to JZS) for financial support. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Indoleamine 2,3-dioxygenase (IDO) is an enzyme that catalyses the degradation of the essential amino acid tryptophan. Elevated tryptophan catabolism mediated by IDO is associated with a wide variety of human cancers and cataract formation (Rohrig et al., 2010). It has also been shown that inhibition of IDO leads to an arrest in tumour growth (Munn & Mellor, 2007; Muller et al., 2005). As part of our on-going research targeted towards the synthesis of α- and β-hydroxy indols as potential IDO inhibitors, the title compound, (I), was synthesized and its crystal structure determined.

There are two independent molecules in the asymmetric unit of (I), Fig. 1, and as seen from the overlay diagram in Fig. 2, these are almost identical with the r.m.s. deviation being 0.1107 Å. The dihedral angles between the fused ring system (r.m.s. deviations = 0.036 and 0.019 Å for the N1- and N2-containing rings, respectively) and the benzene ring are almost the same, i.e. 82.98 (12) and 84.46 (13)°, respectively. The values found in similar structures are of 80.37 (8)° (Chakkaravarthi et al., 2008), 77.41 (5)° (Senthil Kumar et al., 2006) and 66.47 (15) °. (Seshadri et al., 2002). For each molecule, the terminal ethenyl group is almost co-planar to the ring to which it is connected as seen in the values of the C8—C7—C9—C10 and C25—C24—C26—C27 torsion angles of -173.7 (4) and -171.7 (4)°, respectively.

The crystal packing of (I) is sustained by C—H···O and C—H···π interactions, Table 1. These lead to supramolecular arrays parallel to (1 2 4), Fig. 2, which stack with no specific intermolecular interactions between them, Fig. 3.

Experimental

A solution of methyltriphenylphosphonium iodide (0.34 g, 0.84 mmol, 1.4 eq.) in THF (5 ml) at 273 K was poured into a two-necked round-bottomed flask under a nitrogen atmosphere and then under continuous stirring nBuLi (0.36 ml, 0.72 mmol,1.2 eq.) was added drop-wise at 195 K. The mixture was left in a water/ice bath for 20 min, then a solution of 1-tosyl-1-H-indol-carbaldehide (0.181 g) in THF (5 ml) was added. After stirring for another 20 min. the solution was warmed to room temperature and water added. The mixture was extracted with Et2O, washed with NH4Cl and dried under MgSO4. The remaining solvent was removed under reduced pressure. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 7:3 ratio give the pure product (yield = 62%). Crystals for X-ray analysis were obtained by slow evaporation from EtOAc held at 293 K; M.pt: 374–375 K.

NMR 1H (CDCl3, 300 MHz, p.p.m.): δ 7.99 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.3 Hz, 1H), 7.59 (s, 1H), 7.34–7.23 (m, 2H), 7.17 (d, J = 8,2 Hz, 2H), 6.75 (dd, J = 17.8 and 11.3 Hz, 1H), 5.78 (d, J = 17.8 Hz, 1H), 5.33 (d, J = 11,3 1H), 2.29 (s, 3H). NMR 13C (CDCl3, 75 MHz, p.p.m.): δ 145.04, 135.55, 135.19, 129.91 (2 C), 129.04, 127.57, 126.85 (2 C), 124.92, 124.09, 123.53, 121.00, 120.43, 115.35, 113.76, 21.54.

Refinement

The H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structures of the two independent molecules in (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

Overlay diagram for the S1- (red) and S2-containing (blue) molecules aligned so that the N1—S1—C11 and N2—S2—C28 atoms were coincident.

Fig. 3.

Fig. 3.

A view of the supramolecular array parallel to (1 2 4) in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Fig. 4.

Fig. 4.

A view in projection down the a axis of the unit-cell contents of (I) highlighting the stacking of supramolecular layers. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C17H15NO2S Z = 4
Mr = 297.37 F(000) = 624
Triclinic, P1 Dx = 1.323 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 9.8809 (4) Å Cell parameters from 5330 reflections
b = 10.0167 (3) Å θ = 2.9–75.8°
c = 15.5280 (5) Å µ = 1.95 mm1
α = 83.687 (3)° T = 100 K
β = 77.864 (3)° Prism, colourless
γ = 88.769 (3)° 0.35 × 0.30 × 0.25 mm
V = 1493.41 (9) Å3

Data collection

Agilent SuperNova (Dual, Cu at zero) diffractometer with an Atlas detector 6103 independent reflections
Radiation source: fine-focus sealed tube 5505 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
Detector resolution: 10.4041 pixels mm-1 θmax = 76.0°, θmin = 2.9°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −12→11
Tmin = 0.548, Tmax = 0.641 l = −19→17
11566 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0942P)2 + 2.0717P] where P = (Fo2 + 2Fc2)/3
6103 reflections (Δ/σ)max < 0.001
381 parameters Δρmax = 0.94 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.71402 (8) 0.06134 (7) 0.57164 (4) 0.0379 (2)
S2 0.89812 (7) 0.71152 (6) 0.08641 (4) 0.03595 (19)
O1 0.8589 (2) 0.0488 (2) 0.56504 (14) 0.0471 (5)
O2 0.6524 (3) 0.0203 (2) 0.50369 (14) 0.0542 (6)
O3 0.9112 (2) 0.8520 (2) 0.08884 (15) 0.0480 (5)
O4 0.9752 (2) 0.6483 (2) 0.01369 (14) 0.0483 (5)
N1 0.6393 (3) −0.0306 (2) 0.66474 (16) 0.0382 (5)
N2 0.9472 (3) 0.6333 (3) 0.17477 (16) 0.0404 (5)
C1 0.6788 (4) −0.0325 (3) 0.74573 (19) 0.0449 (7)
C2 0.7995 (4) 0.0015 (3) 0.7654 (2) 0.0493 (7)
H2 0.8760 0.0333 0.7202 0.059*
C3 0.8076 (4) −0.0119 (4) 0.8550 (2) 0.0553 (8)
H3 0.8898 0.0140 0.8715 0.066*
C4 0.6984 (4) −0.0617 (3) 0.9187 (2) 0.0544 (9)
H4 0.7090 −0.0756 0.9784 0.065*
C5 0.5724 (4) −0.0930 (3) 0.8997 (2) 0.0559 (9)
H5 0.4975 −0.1239 0.9463 0.067*
C6 0.5557 (4) −0.0792 (3) 0.81181 (19) 0.0420 (7)
C7 0.4485 (4) −0.0954 (3) 0.7646 (2) 0.0482 (7)
C8 0.4978 (4) −0.0643 (3) 0.6777 (2) 0.0464 (7)
H8 0.4464 −0.0648 0.6325 0.056*
C9 0.3022 (4) −0.1397 (3) 0.7985 (3) 0.0592 (9)
H9 0.2490 −0.1537 0.7559 0.071*
C10 0.2413 (5) −0.1609 (4) 0.8818 (3) 0.0692 (11)
H10A 0.2909 −0.1481 0.9265 0.083*
H10B 0.1474 −0.1891 0.8979 0.083*
C11 0.6616 (3) 0.2251 (3) 0.59101 (17) 0.0352 (6)
C12 0.7527 (3) 0.3103 (3) 0.61593 (18) 0.0406 (6)
H12 0.8434 0.2813 0.6204 0.049*
C13 0.7080 (4) 0.4379 (3) 0.6340 (2) 0.0471 (7)
H13 0.7696 0.4979 0.6499 0.057*
C14 0.5751 (4) 0.4798 (3) 0.6294 (2) 0.0472 (7)
C15 0.4850 (3) 0.3920 (3) 0.6042 (2) 0.0466 (7)
H15 0.3938 0.4204 0.6006 0.056*
C16 0.5281 (3) 0.2648 (3) 0.58467 (19) 0.0410 (6)
H16 0.4676 0.2054 0.5672 0.049*
C17 0.5264 (5) 0.6181 (3) 0.6508 (3) 0.0652 (11)
H17A 0.5739 0.6469 0.6951 0.098*
H17B 0.4263 0.6161 0.6745 0.098*
H17C 0.5472 0.6811 0.5969 0.098*
C18 0.9102 (3) 0.6694 (3) 0.2611 (2) 0.0421 (6)
C19 0.8755 (3) 0.7930 (3) 0.2880 (2) 0.0485 (7)
H19 0.8698 0.8696 0.2470 0.058*
C20 0.8481 (4) 0.8009 (4) 0.3812 (2) 0.0560 (9)
H20 0.8223 0.8846 0.4033 0.067*
C21 0.8583 (4) 0.6908 (4) 0.4390 (2) 0.0584 (9)
H21 0.8402 0.6998 0.5007 0.070*
C22 0.8945 (4) 0.5654 (4) 0.4106 (2) 0.0507 (8)
H22 0.9018 0.4896 0.4519 0.061*
C23 0.9197 (3) 0.5538 (3) 0.32029 (18) 0.0365 (6)
C24 0.9604 (3) 0.4422 (3) 0.2660 (2) 0.0427 (7)
C25 0.9723 (3) 0.4917 (3) 0.18085 (19) 0.0414 (6)
H25 0.9943 0.4404 0.1318 0.050*
C26 0.9893 (3) 0.3026 (3) 0.2919 (2) 0.0493 (7)
H26 1.0293 0.2505 0.2455 0.059*
C27 0.9658 (4) 0.2395 (4) 0.3737 (2) 0.0627 (10)
H27A 0.9260 0.2868 0.4227 0.075*
H27B 0.9890 0.1473 0.3831 0.075*
C28 0.7235 (3) 0.6688 (3) 0.10340 (16) 0.0350 (6)
C29 0.6230 (3) 0.7598 (3) 0.13615 (18) 0.0406 (6)
H29 0.6483 0.8447 0.1498 0.049*
C30 0.4852 (3) 0.7244 (4) 0.14844 (19) 0.0475 (7)
H30 0.4156 0.7863 0.1703 0.057*
C31 0.4465 (4) 0.5999 (4) 0.1294 (2) 0.0528 (8)
C32 0.5503 (4) 0.5089 (4) 0.0993 (2) 0.0510 (8)
H32 0.5253 0.4224 0.0882 0.061*
C33 0.6889 (3) 0.5426 (3) 0.08540 (19) 0.0428 (7)
H33 0.7589 0.4807 0.0640 0.051*
C34 0.2970 (4) 0.5637 (6) 0.1404 (3) 0.0743 (12)
H34A 0.2841 0.4677 0.1603 0.111*
H34B 0.2686 0.5838 0.0836 0.111*
H34C 0.2404 0.6160 0.1845 0.111*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0481 (4) 0.0398 (4) 0.0250 (3) 0.0088 (3) −0.0040 (3) −0.0082 (2)
S2 0.0461 (4) 0.0315 (3) 0.0261 (3) 0.0029 (3) 0.0007 (3) −0.0015 (2)
O1 0.0473 (12) 0.0503 (12) 0.0362 (11) 0.0102 (9) 0.0053 (9) −0.0015 (9)
O2 0.0745 (16) 0.0575 (14) 0.0364 (11) 0.0124 (12) −0.0174 (11) −0.0212 (10)
O3 0.0620 (14) 0.0317 (10) 0.0446 (12) −0.0025 (9) 0.0007 (10) −0.0017 (8)
O4 0.0577 (13) 0.0453 (12) 0.0345 (11) 0.0038 (10) 0.0089 (9) −0.0086 (9)
N1 0.0436 (13) 0.0332 (11) 0.0343 (12) 0.0008 (9) 0.0005 (10) −0.0058 (9)
N2 0.0424 (13) 0.0452 (13) 0.0315 (12) 0.0022 (10) −0.0054 (10) −0.0004 (10)
C1 0.072 (2) 0.0307 (13) 0.0294 (14) 0.0035 (13) −0.0069 (13) −0.0019 (11)
C2 0.0564 (19) 0.0441 (16) 0.0438 (17) 0.0082 (14) −0.0053 (14) −0.0005 (13)
C3 0.067 (2) 0.0507 (19) 0.0508 (19) 0.0103 (16) −0.0198 (17) −0.0053 (15)
C4 0.081 (3) 0.0498 (18) 0.0329 (15) 0.0047 (17) −0.0178 (16) 0.0056 (13)
C5 0.080 (3) 0.0447 (17) 0.0365 (16) 0.0042 (16) −0.0017 (16) 0.0019 (13)
C6 0.0633 (19) 0.0284 (13) 0.0318 (14) 0.0089 (12) −0.0043 (13) −0.0045 (10)
C7 0.063 (2) 0.0314 (14) 0.0487 (17) 0.0036 (13) −0.0063 (15) −0.0068 (12)
C8 0.0548 (18) 0.0334 (14) 0.0509 (18) 0.0014 (13) −0.0091 (14) −0.0075 (12)
C9 0.055 (2) 0.0377 (16) 0.077 (3) −0.0096 (14) 0.0078 (18) −0.0125 (16)
C10 0.078 (3) 0.054 (2) 0.071 (3) −0.0040 (19) −0.003 (2) −0.0106 (19)
C11 0.0450 (15) 0.0355 (13) 0.0231 (12) 0.0059 (11) −0.0041 (10) −0.0011 (10)
C12 0.0457 (16) 0.0435 (15) 0.0306 (13) 0.0015 (12) −0.0054 (11) −0.0006 (11)
C13 0.064 (2) 0.0373 (15) 0.0389 (15) −0.0025 (14) −0.0102 (14) −0.0016 (12)
C14 0.068 (2) 0.0361 (15) 0.0346 (15) 0.0087 (14) −0.0058 (14) −0.0015 (11)
C15 0.0489 (17) 0.0452 (16) 0.0424 (16) 0.0120 (13) −0.0062 (13) 0.0014 (13)
C16 0.0464 (16) 0.0416 (15) 0.0338 (14) 0.0045 (12) −0.0078 (12) −0.0009 (11)
C17 0.097 (3) 0.0376 (17) 0.058 (2) 0.0162 (18) −0.011 (2) −0.0059 (15)
C18 0.0384 (15) 0.0517 (17) 0.0356 (14) −0.0015 (12) −0.0042 (11) −0.0082 (12)
C19 0.0467 (17) 0.0479 (17) 0.0505 (18) −0.0021 (13) −0.0081 (14) −0.0068 (14)
C20 0.0501 (19) 0.059 (2) 0.059 (2) −0.0021 (15) −0.0004 (15) −0.0293 (17)
C21 0.053 (2) 0.087 (3) 0.0372 (17) −0.0017 (18) −0.0054 (14) −0.0227 (17)
C22 0.0513 (18) 0.064 (2) 0.0368 (16) −0.0004 (15) −0.0078 (13) −0.0070 (14)
C23 0.0302 (13) 0.0460 (15) 0.0336 (13) 0.0001 (11) −0.0072 (10) −0.0049 (11)
C24 0.0399 (15) 0.0474 (17) 0.0406 (15) 0.0024 (12) −0.0079 (12) −0.0049 (12)
C25 0.0382 (15) 0.0496 (17) 0.0374 (15) 0.0048 (12) −0.0064 (12) −0.0136 (12)
C26 0.0469 (17) 0.0443 (17) 0.0538 (18) 0.0081 (13) −0.0037 (14) −0.0069 (14)
C27 0.075 (3) 0.061 (2) 0.0469 (19) 0.0113 (19) −0.0055 (17) 0.0011 (16)
C28 0.0449 (15) 0.0355 (13) 0.0229 (11) 0.0054 (11) −0.0057 (10) 0.0003 (10)
C29 0.0536 (17) 0.0387 (14) 0.0263 (13) 0.0097 (12) −0.0037 (11) −0.0006 (10)
C30 0.0484 (17) 0.062 (2) 0.0298 (14) 0.0139 (15) −0.0043 (12) −0.0055 (13)
C31 0.0482 (18) 0.079 (2) 0.0324 (15) 0.0026 (16) −0.0108 (13) −0.0078 (15)
C32 0.0564 (19) 0.0563 (19) 0.0450 (17) −0.0009 (15) −0.0182 (15) −0.0112 (14)
C33 0.0543 (18) 0.0417 (15) 0.0350 (14) 0.0074 (13) −0.0134 (12) −0.0079 (12)
C34 0.050 (2) 0.121 (4) 0.057 (2) −0.003 (2) −0.0131 (17) −0.028 (2)

Geometric parameters (Å, º)

S1—O1 1.418 (2) C15—C16 1.381 (4)
S1—O2 1.424 (2) C15—H15 0.9500
S1—N1 1.664 (2) C16—H16 0.9500
S1—C11 1.748 (3) C17—H17A 0.9800
S2—O3 1.421 (2) C17—H17B 0.9800
S2—O4 1.425 (2) C17—H17C 0.9800
S2—N2 1.661 (2) C18—C19 1.364 (5)
S2—C28 1.745 (3) C18—C23 1.412 (4)
N1—C1 1.391 (4) C19—C20 1.426 (5)
N1—C8 1.413 (4) C19—H19 0.9500
N2—C18 1.398 (4) C20—C21 1.360 (6)
N2—C25 1.431 (4) C20—H20 0.9500
C1—C2 1.351 (5) C21—C22 1.392 (5)
C1—C6 1.464 (4) C21—H21 0.9500
C2—C3 1.403 (5) C22—C23 1.389 (4)
C2—H2 0.9500 C22—H22 0.9500
C3—C4 1.363 (5) C23—C24 1.473 (4)
C3—H3 0.9500 C24—C25 1.341 (4)
C4—C5 1.388 (6) C24—C26 1.451 (4)
C4—H4 0.9500 C25—H25 0.9500
C5—C6 1.401 (4) C26—C27 1.331 (5)
C5—H5 0.9500 C26—H26 0.9500
C6—C7 1.431 (5) C27—H27A 0.9500
C7—C8 1.339 (5) C27—H27B 0.9500
C7—C9 1.490 (5) C28—C29 1.388 (4)
C8—H8 0.9500 C28—C33 1.390 (4)
C9—C10 1.304 (6) C29—C30 1.383 (5)
C9—H9 0.9500 C29—H29 0.9500
C10—H10A 0.9500 C30—C31 1.392 (5)
C10—H10B 0.9500 C30—H30 0.9500
C11—C16 1.390 (4) C31—C32 1.398 (5)
C11—C12 1.392 (4) C31—C34 1.499 (5)
C12—C13 1.382 (4) C32—C33 1.384 (5)
C12—H12 0.9500 C32—H32 0.9500
C13—C14 1.384 (5) C33—H33 0.9500
C13—H13 0.9500 C34—H34A 0.9800
C14—C15 1.406 (5) C34—H34B 0.9800
C14—C17 1.505 (4) C34—H34C 0.9800
O1—S1—O2 119.94 (14) C15—C16—C11 118.7 (3)
O1—S1—N1 106.60 (13) C15—C16—H16 120.6
O2—S1—N1 106.14 (14) C11—C16—H16 120.6
O1—S1—C11 110.00 (14) C14—C17—H17A 109.5
O2—S1—C11 109.24 (14) C14—C17—H17B 109.5
N1—S1—C11 103.58 (12) H17A—C17—H17B 109.5
O3—S2—O4 120.11 (13) C14—C17—H17C 109.5
O3—S2—N2 107.90 (14) H17A—C17—H17C 109.5
O4—S2—N2 104.62 (13) H17B—C17—H17C 109.5
O3—S2—C28 109.69 (14) C19—C18—N2 128.6 (3)
O4—S2—C28 109.70 (14) C19—C18—C23 123.3 (3)
N2—S2—C28 103.42 (12) N2—C18—C23 108.0 (3)
C1—N1—C8 110.5 (3) C18—C19—C20 116.2 (3)
C1—N1—S1 125.2 (2) C18—C19—H19 121.9
C8—N1—S1 118.9 (2) C20—C19—H19 121.9
C18—N2—C25 107.6 (2) C21—C20—C19 121.2 (3)
C18—N2—S2 125.8 (2) C21—C20—H20 119.4
C25—N2—S2 120.4 (2) C19—C20—H20 119.4
C2—C1—N1 131.0 (3) C20—C21—C22 121.9 (3)
C2—C1—C6 124.3 (3) C20—C21—H21 119.0
N1—C1—C6 104.7 (3) C22—C21—H21 119.0
C1—C2—C3 117.4 (3) C23—C22—C21 118.4 (3)
C1—C2—H2 121.3 C23—C22—H22 120.8
C3—C2—H2 121.3 C21—C22—H22 120.8
C4—C3—C2 120.4 (4) C22—C23—C18 119.0 (3)
C4—C3—H3 119.8 C22—C23—C24 134.2 (3)
C2—C3—H3 119.8 C18—C23—C24 106.8 (2)
C3—C4—C5 122.6 (3) C25—C24—C26 122.2 (3)
C3—C4—H4 118.7 C25—C24—C23 107.5 (3)
C5—C4—H4 118.7 C26—C24—C23 130.3 (3)
C4—C5—C6 120.0 (3) C24—C25—N2 110.0 (3)
C4—C5—H5 120.0 C24—C25—H25 125.0
C6—C5—H5 120.0 N2—C25—H25 125.0
C5—C6—C7 138.2 (3) C27—C26—C24 127.1 (3)
C5—C6—C1 115.0 (3) C27—C26—H26 116.4
C7—C6—C1 106.8 (3) C24—C26—H26 116.4
C8—C7—C6 109.5 (3) C26—C27—H27A 120.0
C8—C7—C9 120.7 (3) C26—C27—H27B 120.0
C6—C7—C9 129.8 (3) H27A—C27—H27B 120.0
C7—C8—N1 108.4 (3) C29—C28—C33 121.6 (3)
C7—C8—H8 125.8 C29—C28—S2 119.6 (2)
N1—C8—H8 125.8 C33—C28—S2 118.8 (2)
C10—C9—C7 125.3 (4) C30—C29—C28 118.7 (3)
C10—C9—H9 117.4 C30—C29—H29 120.7
C7—C9—H9 117.4 C28—C29—H29 120.7
C9—C10—H10A 120.0 C29—C30—C31 121.3 (3)
C9—C10—H10B 120.0 C29—C30—H30 119.4
H10A—C10—H10B 120.0 C31—C30—H30 119.4
C16—C11—C12 121.9 (3) C30—C31—C32 118.5 (3)
C16—C11—S1 118.9 (2) C30—C31—C34 121.0 (3)
C12—C11—S1 119.1 (2) C32—C31—C34 120.4 (4)
C13—C12—C11 118.4 (3) C33—C32—C31 121.2 (3)
C13—C12—H12 120.8 C33—C32—H32 119.4
C11—C12—H12 120.8 C31—C32—H32 119.4
C12—C13—C14 121.1 (3) C32—C33—C28 118.6 (3)
C12—C13—H13 119.4 C32—C33—H33 120.7
C14—C13—H13 119.4 C28—C33—H33 120.7
C13—C14—C15 119.4 (3) C31—C34—H34A 109.5
C13—C14—C17 120.8 (3) C31—C34—H34B 109.5
C15—C14—C17 119.8 (3) H34A—C34—H34B 109.5
C16—C15—C14 120.4 (3) C31—C34—H34C 109.5
C16—C15—H15 119.8 H34A—C34—H34C 109.5
C14—C15—H15 119.8 H34B—C34—H34C 109.5
O1—S1—N1—C1 44.2 (3) C12—C13—C14—C17 178.9 (3)
O2—S1—N1—C1 173.1 (2) C13—C14—C15—C16 0.4 (5)
C11—S1—N1—C1 −71.9 (3) C17—C14—C15—C16 −179.8 (3)
O1—S1—N1—C8 −164.4 (2) C14—C15—C16—C11 0.4 (4)
O2—S1—N1—C8 −35.4 (2) C12—C11—C16—C15 −0.4 (4)
C11—S1—N1—C8 79.6 (2) S1—C11—C16—C15 176.9 (2)
O3—S2—N2—C18 44.1 (3) C25—N2—C18—C19 −179.2 (3)
O4—S2—N2—C18 173.1 (2) S2—N2—C18—C19 −27.2 (5)
C28—S2—N2—C18 −72.1 (3) C25—N2—C18—C23 3.3 (3)
O3—S2—N2—C25 −167.1 (2) S2—N2—C18—C23 155.4 (2)
O4—S2—N2—C25 −38.1 (3) N2—C18—C19—C20 −177.3 (3)
C28—S2—N2—C25 76.7 (2) C23—C18—C19—C20 −0.1 (5)
C8—N1—C1—C2 −174.9 (3) C18—C19—C20—C21 0.8 (5)
S1—N1—C1—C2 −21.4 (5) C19—C20—C21—C22 −0.6 (6)
C8—N1—C1—C6 3.9 (3) C20—C21—C22—C23 −0.4 (5)
S1—N1—C1—C6 157.4 (2) C21—C22—C23—C18 1.1 (5)
N1—C1—C2—C3 −179.9 (3) C21—C22—C23—C24 179.4 (3)
C6—C1—C2—C3 1.5 (5) C19—C18—C23—C22 −0.8 (5)
C1—C2—C3—C4 2.1 (5) N2—C18—C23—C22 176.8 (3)
C2—C3—C4—C5 −4.3 (5) C19—C18—C23—C24 −179.5 (3)
C3—C4—C5—C6 2.8 (5) N2—C18—C23—C24 −1.9 (3)
C4—C5—C6—C7 −177.8 (3) C22—C23—C24—C25 −178.7 (3)
C4—C5—C6—C1 0.7 (4) C18—C23—C24—C25 −0.3 (3)
C2—C1—C6—C5 −2.9 (4) C22—C23—C24—C26 −0.7 (6)
N1—C1—C6—C5 178.2 (3) C18—C23—C24—C26 177.7 (3)
C2—C1—C6—C7 176.1 (3) C26—C24—C25—N2 −175.9 (3)
N1—C1—C6—C7 −2.8 (3) C23—C24—C25—N2 2.4 (3)
C5—C6—C7—C8 179.3 (4) C18—N2—C25—C24 −3.6 (3)
C1—C6—C7—C8 0.7 (3) S2—N2—C25—C24 −157.5 (2)
C5—C6—C7—C9 −1.0 (6) C25—C24—C26—C27 −171.7 (4)
C1—C6—C7—C9 −179.6 (3) C23—C24—C26—C27 10.5 (6)
C6—C7—C8—N1 1.7 (3) O3—S2—C28—C29 −14.6 (3)
C9—C7—C8—N1 −178.0 (3) O4—S2—C28—C29 −148.5 (2)
C1—N1—C8—C7 −3.7 (3) N2—S2—C28—C29 100.3 (2)
S1—N1—C8—C7 −159.0 (2) O3—S2—C28—C33 166.8 (2)
C8—C7—C9—C10 −173.7 (4) O4—S2—C28—C33 32.8 (3)
C6—C7—C9—C10 6.6 (6) N2—S2—C28—C33 −78.4 (2)
O1—S1—C11—C16 169.2 (2) C33—C28—C29—C30 −1.9 (4)
O2—S1—C11—C16 35.6 (3) S2—C28—C29—C30 179.5 (2)
N1—S1—C11—C16 −77.2 (2) C28—C29—C30—C31 0.6 (4)
O1—S1—C11—C12 −13.5 (3) C29—C30—C31—C32 1.5 (5)
O2—S1—C11—C12 −147.1 (2) C29—C30—C31—C34 −178.2 (3)
N1—S1—C11—C12 100.1 (2) C30—C31—C32—C33 −2.3 (5)
C16—C11—C12—C13 −0.5 (4) C34—C31—C32—C33 177.4 (3)
S1—C11—C12—C13 −177.8 (2) C31—C32—C33—C28 1.0 (5)
C11—C12—C13—C14 1.3 (4) C29—C28—C33—C32 1.1 (4)
C12—C13—C14—C15 −1.3 (5) S2—C28—C33—C32 179.8 (2)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2–C25 and C18–C23 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C8—H8···O2i 0.95 2.50 3.433 (4) 166
C20—H20···O2ii 0.95 2.52 3.373 (5) 149
C25—H25···O4iii 0.95 2.48 3.406 (4) 166
C30—H30···Cg1iv 0.95 2.77 3.617 (4) 149
C34—H34C···Cg2v 0.98 2.95 3.525 (4) 119
C12—H12···Cg3v 0.95 2.87 3.739 (3) 153
C15—H15···Cg3v 0.95 2.86 3.638 (3) 140

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y+1, z; (iii) −x+2, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5227).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542. [DOI] [PMC free article] [PubMed]
  5. ChemAxon (2009). MarvinSketch URL: www.chemaxon.com.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559. [DOI] [PubMed]
  8. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. (2005). Nat. Med. 11, 312–319. [DOI] [PubMed]
  9. Munn, D. H. & Mellor, A. L. (2007). J. Clin. Invest. 117, 1147–1154. [DOI] [PMC free article] [PubMed]
  10. Rohrig, U. F., Awad, L., Grosdidier, A., Larrieu, P., Stroobant, V., Colau, D., Cerundolo, V., Simpson, A. J., Vogel, P., Van den Eynde, B. J., Zoete, V. & Michielin, O. (2010). J. Med. Chem. 53, 1172–1189. [DOI] [PubMed]
  11. Senthil Kumar, G., Chinnakali, K., Balamurugan, R., Mohanakrishnan, A. K. & Fun, H.-K. (2006). Acta Cryst. E62, o4972–o4974.
  12. Seshadri, P. R., Velmurugan, D., Govindaraj, J., Kannadasan, S., Srinivasan, P. C., Shanmuga Sundara Raj, S., Fun, H.-K. & Kim, M. J. (2002). Acta Cryst. C58, o700–o703. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021526/hg5227sup1.cif

e-68-o1829-sup1.cif (27.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021526/hg5227Isup2.hkl

e-68-o1829-Isup2.hkl (298.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021526/hg5227Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES