Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1831. doi: 10.1107/S1600536812022106

N-(Anthracen-9-ylmeth­yl)adamantan-1-amine

Wei-Qiang Fan a,*, Fu-Xiao Chen b
PMCID: PMC3379404  PMID: 22719602

Abstract

In the crystal stucture of the of the title compound, C25H27N, stong π–π inter­actions are found between adjacent anthracene fragments, with a shortest centroid–centroid distance of 3.5750 (9) Å.

Related literature  

Anthracene derivatives have been widely used in the field of anion recognition, metal ion fluorescent sensors, as well as pH sensors, see: Bernhardt et al. (2001), Chen & Chen (2004); Gunnlaugsson et al. (2003); Kim & Yoon (2002)graphic file with name e-68-o1831-scheme1.jpg

Experimental  

Crystal data  

  • C25H27N

  • M r = 341.26

  • Orthorhombic, Inline graphic

  • a = 9.9546 (4) Å

  • b = 42.1921 (19) Å

  • c = 8.6133 (4) Å

  • V = 3617.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.35 × 0.24 × 0.20 mm

Data collection  

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.975, T max = 0.998

  • 18689 measured reflections

  • 3594 independent reflections

  • 3089 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.104

  • S = 1.03

  • 3594 reflections

  • 238 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022106/aa2056sup1.cif

e-68-o1831-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022106/aa2056Isup2.hkl

e-68-o1831-Isup2.hkl (172.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022106/aa2056Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Start-up Foundation for Advanced Professionals of Jiangsu University (11JDG105) for support.

supplementary crystallographic information

Comment

Anthracene derivatives have been widely used in the field of anion recognition, metal ionfluorescent sensors, as well as pH sensors (Gunnlaugsson et al., 2003; Chen & Chen, 2004; Kim & Yoon, 2002; Bernhardt et al. 2001) because of their excellent photophysical properties and high fluorescence.

In the crystals of the title compound (Fig. 1), there are two π–π interactions between benzene rings of the ajacent anthracene fragments with the distances Cg1···Cg2i = 3.5750 (9) Å and Cg1···Cg3i = 4.0043 (10) Å. (Cg1, Cg2 and Cg3 are the centroids of the rings [C1/C5 and C14], [C5/C7 and C12/C14] and [C7/C12], respectively; symmetry code: (i) 1/2 - x, y, z + 1/2) forming one-dimensional supramolecular chains along c axis direction (Fig. 2).

Experimental

9-Anthracenecarboxaldehyde (2.06 g, 10 mmol) was added into a solution of amantadine (1.51 g, 10 mmol) in ethanol. Yellow precipitate was formed atfer string for 1 h. The yellow Schiff base was filtrated and dryed. NaBH4 (7.56 g, 20 mmol) was added into a solution of the Schiff base in anhydrous methanol (120 ml). After 3 h, the white solid, 9-[(adamantan-1-ylamino)methyl]anthracene, was obtained by reduced pressure distillation, extraction and drying. The colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from ethanol.

Refinement

H atom bonded to N was located in a difference Fourier map and refined isotropically with a bond restraint of N—H= 0.85 Å and Uiso(H) = 1.5 Ueq(N). Other H atoms were placed in calculated positions with C—H distances 0.93 (aromatic), 0.97 Å (methylene) and 0.97 Å (methine) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Thermal displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The one-dimensional supramolecular chains linked by π–π interactions. H atoms are omitted for clarity.

Crystal data

C25H27N F(000) = 1472
Mr = 341.26 Dx = 1.253 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 3594 reflections
a = 9.9546 (4) Å θ = 1.0–26.0°
b = 42.1921 (19) Å µ = 0.07 mm1
c = 8.6133 (4) Å T = 293 K
V = 3617.6 (3) Å3 Block, colorless
Z = 8 0.35 × 0.24 × 0.20 mm

Data collection

Bruker APEX CCD area-detector diffractometer 3594 independent reflections
Radiation source: fine-focus sealed tube 3089 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
ω scans θmax = 26.0°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −8→12
Tmin = 0.975, Tmax = 0.998 k = −52→50
18689 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0431P)2 + 1.8749P] where P = (Fo2 + 2Fc2)/3
3594 reflections (Δ/σ)max < 0.001
238 parameters Δρmax = 0.30 e Å3
1 restraint Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.07687 (14) 0.06244 (3) 0.02106 (16) 0.0213 (3)
H1 0.0190 0.0763 0.0720 0.026*
C2 0.02463 (14) 0.03905 (3) −0.06924 (16) 0.0251 (3)
H2 −0.0681 0.0372 −0.0795 0.030*
C3 0.10948 (15) 0.01740 (3) −0.14794 (16) 0.0263 (3)
H3 0.0724 0.0015 −0.2089 0.032*
C4 0.24486 (15) 0.01993 (3) −0.13433 (15) 0.0239 (3)
H4 0.2998 0.0057 −0.1866 0.029*
C5 0.30441 (14) 0.04417 (3) −0.04106 (15) 0.0189 (3)
C6 0.44299 (14) 0.04664 (3) −0.02481 (15) 0.0206 (3)
H6 0.4980 0.0321 −0.0753 0.025*
C7 0.50153 (13) 0.07034 (3) 0.06532 (15) 0.0192 (3)
C8 0.64357 (14) 0.07199 (3) 0.08598 (18) 0.0275 (3)
H8 0.6984 0.0572 0.0370 0.033*
C9 0.70002 (15) 0.09479 (3) 0.1760 (2) 0.0320 (4)
H9 0.7925 0.0951 0.1911 0.038*
C10 0.61811 (14) 0.11826 (3) 0.24708 (17) 0.0266 (3)
H10 0.6577 0.1342 0.3061 0.032*
C11 0.48252 (13) 0.11763 (3) 0.22964 (15) 0.0201 (3)
H11 0.4309 0.1334 0.2755 0.024*
C12 0.41699 (13) 0.09318 (3) 0.14216 (14) 0.0165 (3)
C13 0.27606 (13) 0.09040 (3) 0.13158 (14) 0.0164 (3)
C14 0.21886 (13) 0.06624 (3) 0.03960 (14) 0.0177 (3)
C15 0.18568 (13) 0.11250 (3) 0.22289 (14) 0.0173 (3)
H15A 0.1067 0.1010 0.2570 0.021*
H15B 0.2330 0.1199 0.3145 0.021*
C16 0.07339 (12) 0.16531 (3) 0.21643 (14) 0.0148 (3)
C17 −0.03739 (12) 0.15278 (3) 0.32484 (14) 0.0161 (3)
H17A −0.1027 0.1409 0.2647 0.019*
H17B 0.0018 0.1385 0.4007 0.019*
C18 −0.10802 (12) 0.18021 (3) 0.40888 (15) 0.0178 (3)
H18 −0.1777 0.1717 0.4777 0.021*
C19 −0.17216 (13) 0.20239 (3) 0.28916 (16) 0.0211 (3)
H19A −0.2167 0.2198 0.3417 0.025*
H19B −0.2389 0.1909 0.2293 0.025*
C20 −0.06276 (13) 0.21533 (3) 0.18062 (16) 0.0204 (3)
H20 −0.1037 0.2294 0.1034 0.024*
C21 0.04073 (13) 0.23400 (3) 0.27656 (16) 0.0214 (3)
H21A 0.1096 0.2425 0.2087 0.026*
H21B −0.0030 0.2516 0.3287 0.026*
C22 0.10463 (13) 0.21183 (3) 0.39676 (15) 0.0193 (3)
H22 0.1706 0.2237 0.4581 0.023*
C23 0.17531 (12) 0.18428 (3) 0.31292 (15) 0.0172 (3)
H23A 0.2450 0.1926 0.2454 0.021*
H23B 0.2174 0.1705 0.3887 0.021*
C24 0.00819 (13) 0.18773 (3) 0.09765 (15) 0.0185 (3)
H24A −0.0565 0.1761 0.0357 0.022*
H24B 0.0766 0.1960 0.0285 0.022*
C25 −0.00415 (13) 0.19856 (3) 0.50496 (15) 0.0191 (3)
H25A 0.0364 0.1846 0.5811 0.023*
H25B −0.0479 0.2158 0.5598 0.023*
N1 0.14369 (11) 0.14005 (2) 0.12914 (12) 0.0168 (2)
H1N 0.0920 (15) 0.1338 (3) 0.0533 (16) 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0250 (7) 0.0178 (6) 0.0210 (7) 0.0004 (5) 0.0014 (5) 0.0045 (5)
C2 0.0253 (7) 0.0248 (7) 0.0253 (7) −0.0064 (6) −0.0025 (6) 0.0061 (6)
C3 0.0386 (8) 0.0200 (7) 0.0204 (7) −0.0101 (6) −0.0025 (6) 0.0001 (5)
C4 0.0371 (8) 0.0158 (6) 0.0189 (7) −0.0018 (6) 0.0031 (6) −0.0011 (5)
C5 0.0282 (7) 0.0130 (6) 0.0155 (6) −0.0009 (5) 0.0019 (5) 0.0020 (5)
C6 0.0272 (7) 0.0143 (6) 0.0204 (7) 0.0037 (5) 0.0065 (5) −0.0012 (5)
C7 0.0231 (7) 0.0146 (6) 0.0199 (7) 0.0013 (5) 0.0042 (5) 0.0016 (5)
C8 0.0223 (7) 0.0218 (7) 0.0384 (9) 0.0026 (5) 0.0077 (6) −0.0037 (6)
C9 0.0195 (7) 0.0279 (7) 0.0488 (10) −0.0032 (6) 0.0031 (7) −0.0058 (7)
C10 0.0268 (7) 0.0208 (7) 0.0323 (8) −0.0067 (5) 0.0014 (6) −0.0042 (6)
C11 0.0257 (7) 0.0146 (6) 0.0201 (7) 0.0000 (5) 0.0038 (5) 0.0003 (5)
C12 0.0229 (6) 0.0119 (6) 0.0147 (6) 0.0009 (5) 0.0024 (5) 0.0022 (5)
C13 0.0231 (7) 0.0120 (5) 0.0139 (6) 0.0021 (5) 0.0023 (5) 0.0041 (5)
C14 0.0240 (7) 0.0138 (6) 0.0152 (6) 0.0004 (5) 0.0017 (5) 0.0044 (5)
C15 0.0203 (6) 0.0151 (6) 0.0165 (6) 0.0013 (5) 0.0021 (5) 0.0015 (5)
C16 0.0168 (6) 0.0124 (6) 0.0153 (6) 0.0010 (5) 0.0002 (5) −0.0002 (5)
C17 0.0173 (6) 0.0141 (6) 0.0170 (6) −0.0018 (5) 0.0009 (5) −0.0005 (5)
C18 0.0176 (6) 0.0165 (6) 0.0192 (6) −0.0003 (5) 0.0038 (5) −0.0013 (5)
C19 0.0179 (6) 0.0209 (6) 0.0246 (7) 0.0044 (5) −0.0008 (5) −0.0036 (5)
C20 0.0249 (7) 0.0156 (6) 0.0207 (7) 0.0052 (5) −0.0020 (5) 0.0027 (5)
C21 0.0259 (7) 0.0129 (6) 0.0254 (7) 0.0006 (5) 0.0025 (6) 0.0008 (5)
C22 0.0206 (6) 0.0146 (6) 0.0226 (7) −0.0029 (5) −0.0024 (5) −0.0028 (5)
C23 0.0158 (6) 0.0153 (6) 0.0206 (7) −0.0008 (5) −0.0005 (5) 0.0016 (5)
C24 0.0215 (6) 0.0180 (6) 0.0160 (6) 0.0020 (5) −0.0006 (5) 0.0012 (5)
C25 0.0256 (7) 0.0145 (6) 0.0171 (6) 0.0019 (5) −0.0006 (5) −0.0022 (5)
N1 0.0212 (6) 0.0145 (5) 0.0147 (5) 0.0037 (4) −0.0003 (4) 0.0002 (4)

Geometric parameters (Å, º)

C1—C2 1.3598 (19) C16—N1 1.4800 (15)
C1—C14 1.4314 (19) C16—C23 1.5364 (16)
C1—H1 0.9300 C16—C24 1.5373 (16)
C2—C3 1.417 (2) C16—C17 1.5387 (16)
C2—H2 0.9300 C17—C18 1.5355 (16)
C3—C4 1.357 (2) C17—H17A 0.9700
C3—H3 0.9300 C17—H17B 0.9700
C4—C5 1.4291 (18) C18—C19 1.5318 (18)
C4—H4 0.9300 C18—C25 1.5339 (17)
C5—C6 1.3905 (19) C18—H18 0.9800
C5—C14 1.4407 (18) C19—C20 1.5357 (18)
C6—C7 1.3937 (18) C19—H19A 0.9700
C6—H6 0.9300 C19—H19B 0.9700
C7—C8 1.4268 (19) C20—C24 1.5378 (17)
C7—C12 1.4403 (17) C20—C21 1.5379 (18)
C8—C9 1.357 (2) C20—H20 0.9800
C8—H8 0.9300 C21—C22 1.5335 (18)
C9—C10 1.422 (2) C21—H21A 0.9700
C9—H9 0.9300 C21—H21B 0.9700
C10—C11 1.3584 (19) C22—C25 1.5346 (18)
C10—H10 0.9300 C22—C23 1.5389 (17)
C11—C12 1.4346 (17) C22—H22 0.9800
C11—H11 0.9300 C23—H23A 0.9700
C12—C13 1.4107 (18) C23—H23B 0.9700
C13—C14 1.4110 (17) C24—H24A 0.9700
C13—C15 1.5155 (16) C24—H24B 0.9700
C15—N1 1.4760 (15) C25—H25A 0.9700
C15—H15A 0.9700 C25—H25B 0.9700
C15—H15B 0.9700 N1—H1N 0.873 (13)
C2—C1—C14 121.52 (13) C16—C17—H17A 109.5
C2—C1—H1 119.2 C18—C17—H17B 109.5
C14—C1—H1 119.2 C16—C17—H17B 109.5
C1—C2—C3 120.90 (13) H17A—C17—H17B 108.1
C1—C2—H2 119.6 C19—C18—C25 109.63 (10)
C3—C2—H2 119.5 C19—C18—C17 109.51 (10)
C4—C3—C2 120.00 (12) C25—C18—C17 109.03 (10)
C4—C3—H3 120.0 C19—C18—H18 109.6
C2—C3—H3 120.0 C25—C18—H18 109.6
C3—C4—C5 121.12 (13) C17—C18—H18 109.6
C3—C4—H4 119.4 C18—C19—C20 109.35 (10)
C5—C4—H4 119.4 C18—C19—H19A 109.8
C6—C5—C4 121.45 (12) C20—C19—H19A 109.8
C6—C5—C14 119.30 (12) C18—C19—H19B 109.8
C4—C5—C14 119.24 (12) C20—C19—H19B 109.8
C5—C6—C7 121.65 (12) H19A—C19—H19B 108.3
C5—C6—H6 119.2 C19—C20—C24 109.84 (10)
C7—C6—H6 119.2 C19—C20—C21 109.27 (11)
C6—C7—C8 121.25 (12) C24—C20—C21 109.26 (10)
C6—C7—C12 119.45 (12) C19—C20—H20 109.5
C8—C7—C12 119.29 (12) C24—C20—H20 109.5
C9—C8—C7 121.07 (13) C21—C20—H20 109.5
C9—C8—H8 119.5 C22—C21—C20 109.15 (10)
C7—C8—H8 119.5 C22—C21—H21A 109.8
C8—C9—C10 120.16 (13) C20—C21—H21A 109.8
C8—C9—H9 119.9 C22—C21—H21B 109.8
C10—C9—H9 119.9 C20—C21—H21B 109.8
C11—C10—C9 120.58 (13) H21A—C21—H21B 108.3
C11—C10—H10 119.7 C21—C22—C25 109.87 (11)
C9—C10—H10 119.7 C21—C22—C23 109.49 (10)
C10—C11—C12 121.59 (12) C25—C22—C23 109.38 (10)
C10—C11—H11 119.2 C21—C22—H22 109.4
C12—C11—H11 119.2 C25—C22—H22 109.4
C13—C12—C11 123.08 (11) C23—C22—H22 109.4
C13—C12—C7 119.73 (11) C16—C23—C22 110.21 (10)
C11—C12—C7 117.18 (12) C16—C23—H23A 109.6
C12—C13—C14 119.83 (11) C22—C23—H23A 109.6
C12—C13—C15 120.39 (11) C16—C23—H23B 109.6
C14—C13—C15 119.75 (11) C22—C23—H23B 109.6
C13—C14—C1 122.83 (12) H23A—C23—H23B 108.1
C13—C14—C5 119.96 (12) C16—C24—C20 110.53 (10)
C1—C14—C5 117.21 (12) C16—C24—H24A 109.5
N1—C15—C13 111.64 (10) C20—C24—H24A 109.5
N1—C15—H15A 109.3 C16—C24—H24B 109.5
C13—C15—H15A 109.3 C20—C24—H24B 109.5
N1—C15—H15B 109.3 H24A—C24—H24B 108.1
C13—C15—H15B 109.3 C18—C25—C22 109.40 (10)
H15A—C15—H15B 108.0 C18—C25—H25A 109.8
N1—C16—C23 109.73 (10) C22—C25—H25A 109.8
N1—C16—C24 107.74 (10) C18—C25—H25B 109.8
C23—C16—C24 108.55 (10) C22—C25—H25B 109.8
N1—C16—C17 113.57 (9) H25A—C25—H25B 108.2
C23—C16—C17 108.90 (10) C15—N1—C16 115.03 (9)
C24—C16—C17 108.22 (10) C15—N1—H1N 109.8 (10)
C18—C17—C16 110.81 (10) C16—N1—H1N 108.6 (10)
C18—C17—H17A 109.5
C14—C1—C2—C3 0.3 (2) C12—C13—C15—N1 94.66 (13)
C1—C2—C3—C4 −0.3 (2) C14—C13—C15—N1 −87.49 (13)
C2—C3—C4—C5 0.2 (2) N1—C16—C17—C18 −178.78 (10)
C3—C4—C5—C6 179.09 (13) C23—C16—C17—C18 58.63 (13)
C3—C4—C5—C14 −0.04 (19) C24—C16—C17—C18 −59.20 (13)
C4—C5—C6—C7 179.63 (12) C16—C17—C18—C19 60.18 (13)
C14—C5—C6—C7 −1.24 (19) C16—C17—C18—C25 −59.77 (13)
C5—C6—C7—C8 177.65 (13) C25—C18—C19—C20 60.30 (13)
C5—C6—C7—C12 −0.85 (19) C17—C18—C19—C20 −59.28 (13)
C6—C7—C8—C9 −178.87 (14) C18—C19—C20—C24 59.26 (13)
C12—C7—C8—C9 −0.4 (2) C18—C19—C20—C21 −60.59 (13)
C7—C8—C9—C10 −2.3 (2) C19—C20—C21—C22 60.28 (13)
C8—C9—C10—C11 1.9 (2) C24—C20—C21—C22 −59.93 (13)
C9—C10—C11—C12 1.2 (2) C20—C21—C22—C25 −59.94 (13)
C10—C11—C12—C13 174.98 (13) C20—C21—C22—C23 60.21 (13)
C10—C11—C12—C7 −3.74 (19) N1—C16—C23—C22 176.69 (10)
C6—C7—C12—C13 3.06 (18) C24—C16—C23—C22 59.19 (13)
C8—C7—C12—C13 −175.46 (12) C17—C16—C23—C22 −58.43 (12)
C6—C7—C12—C11 −178.18 (11) C21—C22—C23—C16 −60.42 (13)
C8—C7—C12—C11 3.30 (18) C25—C22—C23—C16 60.03 (13)
C11—C12—C13—C14 178.18 (11) N1—C16—C24—C20 −178.02 (10)
C7—C12—C13—C14 −3.14 (17) C23—C16—C24—C20 −59.25 (13)
C11—C12—C13—C15 −3.97 (18) C17—C16—C24—C20 58.80 (13)
C7—C12—C13—C15 174.71 (11) C19—C20—C24—C16 −59.76 (13)
C12—C13—C14—C1 −178.69 (11) C21—C20—C24—C16 60.10 (13)
C15—C13—C14—C1 3.44 (17) C19—C18—C25—C22 −59.63 (13)
C12—C13—C14—C5 1.06 (17) C17—C18—C25—C22 60.24 (13)
C15—C13—C14—C5 −176.81 (11) C21—C22—C25—C18 59.59 (13)
C2—C1—C14—C13 179.54 (12) C23—C22—C25—C18 −60.63 (13)
C2—C1—C14—C5 −0.22 (18) C13—C15—N1—C16 −170.68 (10)
C6—C5—C14—C13 1.15 (18) C23—C16—N1—C15 75.36 (12)
C4—C5—C14—C13 −179.70 (11) C24—C16—N1—C15 −166.62 (10)
C6—C5—C14—C1 −179.09 (11) C17—C16—N1—C15 −46.77 (14)
C4—C5—C14—C1 0.06 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2056).

References

  1. Bernhardt, P. V., Moore, E. G. & Riley, M. J. (2001). Inorg. Chem 40, 5799–5805. [DOI] [PubMed]
  2. Bruker (1999). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, Q. Y. & Chen, C. F. (2004). Tetrahedron Lett 45, 6493–6496.
  4. Gunnlaugsson, T., Lee, T. C. & Parkesh, R. (2003). Org. Lett 5, 4065–4068. [DOI] [PubMed]
  5. Kim, S. K. & Yoon, J. (2002). Chem. Commun pp. 770–771. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022106/aa2056sup1.cif

e-68-o1831-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022106/aa2056Isup2.hkl

e-68-o1831-Isup2.hkl (172.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022106/aa2056Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES