Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1837–o1838. doi: 10.1107/S1600536812022258

Methyl 2-{6-[(1-meth­oxy-1-oxopropan-2-yl)amino­carbon­yl]pyridine-2-carboxamido}­propano­ate

Mohamed A Al-Omar a,b, Abdel-Galil E Amr b,c, Hazem A Ghabbour a, Tze Shyang Chia d, Hoong-Kun Fun d,*,
PMCID: PMC3379408  PMID: 22719606

Abstract

In the title compound, C15H19N3O6, the amide planes are inclined at dihedral angles of 0.8 (6) and 12.1 (3)° with respect to the central pyridine ring. The mean planes of the corresponding methyl acetate groups form dihedral angles of 41.76 (13) and 86.48 (15)°, respectively with the mean plane of pyridine ring. A pair of weak intra­molecular N—H⋯N hydrogen bonds generate an S(5)S(5) ring motif in the mol­ecule. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into [001] chains. The chains are cross-linked by C—H⋯O hydrogen bonds into layers lying parallel to bc plane. The crystal packing also features a C—H⋯π inter­action.

Related literature  

For the synthesis and biological activity screening of some dipicolinic acid bis-l-amino acid hydrazide derivatives and their corresponding acids, see: Abou-Ghalia & Amr (2004); Al-Salahi et al. (2010); Al-Omar & Amr (2010); Attia et al. (2000). For the biological activity of 2,6-disubstituted pyridine derivatives, see: Amr (2005); Abou-Ghalia et al. (2003); Amr, Sayed & Abdulla (2005); Amr et al. (2006); Hammam et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1837-scheme1.jpg

Experimental  

Crystal data  

  • C15H19N3O6

  • M r = 337.33

  • Monoclinic, Inline graphic

  • a = 8.9735 (3) Å

  • b = 20.7073 (8) Å

  • c = 10.4048 (5) Å

  • β = 122.901 (3)°

  • V = 1623.29 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 296 K

  • 0.74 × 0.25 × 0.06 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.551, T max = 0.947

  • 10358 measured reflections

  • 2703 independent reflections

  • 2058 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.192

  • S = 1.04

  • 2703 reflections

  • 229 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022258/hb6780sup1.cif

e-68-o1837-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022258/hb6780Isup2.hkl

e-68-o1837-Isup2.hkl (132.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022258/hb6780Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N1 0.85 (3) 2.23 (3) 2.676 (3) 113 (2)
N3—H1N3⋯O4i 0.85 (2) 2.35 (2) 3.080 (2) 145 (2)
N2—H1N2⋯N1 0.84 (3) 2.32 (3) 2.685 (3) 107 (3)
N2—H1N2⋯O4i 0.83 (3) 2.55 (3) 3.290 (3) 149 (2)
C9—H9B⋯O2ii 0.96 2.41 3.329 (3) 159
C15—H15BCg1iii 0.96 2.78 3.544 (4) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MAO, AEA and HAG thank the Deanship of Scientific Research at King Saud University for funding through the research group project No. RGP-VPP-099. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

In our previous work (Abou-Ghalia & Amr, 2004; Al-Salahi et al., 2010; Al-Omar & Amr, 2010), we have reported the synthesis and biological activity screening of some dipicolinic acid bis-L-amino acid hydrazide derivatives and their corresponding acids (Attia et al., 2000). In view of the significance of 2,6-disubstituted pyridine derivatives as biologically active congeners (Amr, 2005; Abou-Ghalia, Amr & Abdulla, 2003; Amr, Sayed & Abdulla, 2005; Amr et al., 2006; Hammam et al., 2003), we report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The amide planes (O1/N2/C6 & O4/N3/C11) are inclined at dihedral angles of 0.8 (6) and 12.1 (3)°, respectively, with respect to the central pyridine ring (N1/C1–C5). The mean planes of the methyl acetate groups (O2/O3/C7–C9 with maximum deviation = 0.007 (2) Å at atom O3 & O5/O6/C12–C14 with maximum deviation = 0.011 (2) Å at atom O6) form dihedral angles of 41.76 (13) and 86.48 (15)°, respectively with the mean plane of pyridine ring. Weak intramolecular N2—H1N2···N1 and N3—H1N3···N1 hydrogen bonds (Table 1) generate an S(5)S(5) ring motif (Bernstein et al., 1995) in the molecule.

In the crystal (Fig. 2), molecules are linked by intermolecular N3—H1N3···O4, N2—H1N2···O4 and C9—H9B···O2 hydrogen bonds (Table 1) into two-dimensional networks parallel to bc plane. The crystal packing is further stabilized by C—H···π interaction (Table 1), involving Cg1 which is the centroid of N1/C1–C5 ring.

Experimental

To a cold mixture (-15 °C) of 2,6-pyridine dicarboxylic acid (0.167 g, 1 mmol) in cold dry tetrahydrofuran (100 ml) and ethyl chloroformate (0.216 g, 2 mmol), triethylamine (0.202 g, 2 mmol) was added with stirring. After 10 min, D-alanyl methyl ester (0.206 g, 2 mmol) was then added. The reaction mixture was stirred for 3 h at -15 °C and then 12 h at r.t. The triethylamine hydrochloride formed was filtered off and the solvent was evaporated under reduced pressure. The residue obtained was dissolved in 150 ml dichloromethane, washed with water, 1 N hydrochloric acid, 1 N sodium bicarbonate and finally with water and dried over anhydrous calcium chloride. The solvent was evaporated under reduced pressure to dryness and the obtained solid was crystallized from dichloromethane to give colourless plates of the title compound.

Refinement

The atoms H1N2 and H1N3 were located in a difference fourier map and refined freely [N—H = 0.83 (3) and 0.85 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93, 0.96 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids. The dashed lines represent the weak intramolecular N—H···N hydrogen bonds.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C15H19N3O6 F(000) = 712
Mr = 337.33 Dx = 1.380 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 1828 reflections
a = 8.9735 (3) Å θ = 5.5–70.4°
b = 20.7073 (8) Å µ = 0.91 mm1
c = 10.4048 (5) Å T = 296 K
β = 122.901 (3)° Plate, colourless
V = 1623.29 (11) Å3 0.74 × 0.25 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 2703 independent reflections
Radiation source: fine-focus sealed tube 2058 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
φ and ω scans θmax = 65.0°, θmin = 5.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.551, Tmax = 0.947 k = −24→24
10358 measured reflections l = −11→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1344P)2] where P = (Fo2 + 2Fc2)/3
2703 reflections (Δ/σ)max < 0.001
229 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.1466 (3) 0.53103 (10) 0.8205 (2) 0.0711 (6)
O2 0.4090 (3) 0.56823 (9) 0.89076 (19) 0.0641 (5)
O3 0.2864 (3) 0.49181 (10) 0.7100 (2) 0.0710 (6)
O4 0.2803 (2) 0.77285 (8) 1.37663 (16) 0.0578 (5)
O5 0.6292 (4) 0.83396 (18) 1.1329 (3) 0.1239 (11)
O6 0.3640 (4) 0.87058 (11) 1.0701 (2) 0.0823 (7)
N1 0.0899 (2) 0.66141 (9) 1.07033 (18) 0.0438 (5)
N2 0.0839 (3) 0.58945 (11) 0.8529 (2) 0.0602 (6)
N3 0.3295 (3) 0.75674 (9) 1.1876 (2) 0.0497 (5)
C1 0.0965 (3) 0.69752 (10) 1.1805 (2) 0.0449 (5)
C2 −0.0180 (4) 0.68863 (13) 1.2288 (3) 0.0584 (7)
H2A −0.0101 0.7145 1.3054 0.070*
C3 −0.1448 (4) 0.64055 (14) 1.1610 (3) 0.0638 (7)
H3A −0.2241 0.6337 1.1910 0.077*
C4 −0.1521 (4) 0.60292 (13) 1.0484 (3) 0.0572 (6)
H4A −0.2358 0.5701 1.0016 0.069*
C5 −0.0334 (3) 0.61483 (11) 1.0065 (2) 0.0471 (5)
C6 −0.0374 (3) 0.57458 (12) 0.8840 (2) 0.0530 (6)
C7 0.0902 (4) 0.55753 (13) 0.7325 (3) 0.0607 (7)
H7A 0.0229 0.5172 0.7074 0.073*
C8 0.2796 (4) 0.54102 (12) 0.7893 (3) 0.0550 (6)
C9 0.4596 (4) 0.46969 (16) 0.7517 (3) 0.0766 (8)
H9A 0.4468 0.4353 0.6845 0.115*
H9B 0.5236 0.4543 0.8553 0.115*
H9C 0.5236 0.5047 0.7430 0.115*
C10 0.0058 (4) 0.59893 (17) 0.5880 (3) 0.0788 (9)
H10A −0.1141 0.6092 0.5555 0.118*
H10B 0.0058 0.5755 0.5083 0.118*
H10C 0.0726 0.6381 0.6093 0.118*
C11 0.2444 (3) 0.74632 (10) 1.2579 (2) 0.0439 (5)
C12 0.4982 (3) 0.79021 (13) 1.2598 (3) 0.0566 (6)
H12A 0.5071 0.8179 1.3401 0.068*
C13 0.5066 (5) 0.83318 (16) 1.1474 (3) 0.0723 (9)
C14 0.3623 (7) 0.91492 (19) 0.9625 (4) 0.1168 (16)
H14A 0.2584 0.9416 0.9187 0.175*
H14B 0.3610 0.8911 0.8828 0.175*
H14C 0.4665 0.9416 1.0144 0.175*
C15 0.6504 (4) 0.74250 (17) 1.3363 (4) 0.0899 (10)
H15A 0.6515 0.7215 1.4191 0.135*
H15B 0.7605 0.7650 1.3753 0.135*
H15C 0.6356 0.7107 1.2630 0.135*
H1N3 0.289 (3) 0.7353 (11) 1.105 (3) 0.044 (6)*
H1N2 0.151 (4) 0.6210 (14) 0.896 (3) 0.063 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0754 (13) 0.0729 (12) 0.0837 (11) −0.0269 (10) 0.0553 (11) −0.0275 (9)
O2 0.0620 (12) 0.0660 (11) 0.0641 (9) −0.0096 (9) 0.0342 (9) −0.0117 (8)
O3 0.0754 (14) 0.0750 (12) 0.0845 (12) −0.0149 (10) 0.0576 (11) −0.0296 (9)
O4 0.0738 (12) 0.0660 (10) 0.0528 (8) −0.0078 (9) 0.0469 (9) −0.0110 (7)
O5 0.115 (2) 0.176 (3) 0.136 (2) −0.051 (2) 0.1048 (19) −0.031 (2)
O6 0.1178 (18) 0.0758 (13) 0.0865 (12) −0.0121 (13) 0.0770 (13) 0.0060 (10)
N1 0.0479 (11) 0.0482 (10) 0.0445 (9) 0.0006 (8) 0.0310 (9) 0.0015 (7)
N2 0.0646 (14) 0.0696 (14) 0.0651 (11) −0.0223 (12) 0.0473 (11) −0.0253 (10)
N3 0.0573 (13) 0.0580 (11) 0.0470 (9) −0.0132 (9) 0.0369 (10) −0.0131 (8)
C1 0.0506 (13) 0.0491 (12) 0.0440 (9) 0.0040 (10) 0.0315 (10) 0.0047 (8)
C2 0.0720 (17) 0.0656 (15) 0.0631 (12) −0.0023 (13) 0.0533 (13) −0.0044 (10)
C3 0.0662 (16) 0.0735 (17) 0.0811 (15) −0.0105 (14) 0.0591 (14) −0.0040 (12)
C4 0.0602 (16) 0.0566 (14) 0.0705 (14) −0.0088 (12) 0.0457 (13) −0.0010 (10)
C5 0.0490 (13) 0.0486 (12) 0.0503 (10) 0.0000 (10) 0.0312 (11) 0.0019 (9)
C6 0.0542 (15) 0.0541 (13) 0.0569 (11) −0.0060 (11) 0.0343 (12) −0.0062 (10)
C7 0.0639 (16) 0.0681 (16) 0.0653 (13) −0.0184 (13) 0.0450 (13) −0.0261 (11)
C8 0.0679 (17) 0.0549 (13) 0.0589 (12) −0.0104 (13) 0.0452 (13) −0.0090 (10)
C9 0.085 (2) 0.083 (2) 0.0836 (17) 0.0065 (17) 0.0600 (17) −0.0092 (14)
C10 0.072 (2) 0.105 (2) 0.0569 (13) −0.0048 (18) 0.0335 (15) −0.0183 (14)
C11 0.0519 (13) 0.0489 (12) 0.0430 (10) 0.0039 (10) 0.0337 (10) 0.0022 (8)
C12 0.0583 (15) 0.0647 (15) 0.0617 (12) −0.0148 (12) 0.0422 (12) −0.0206 (10)
C13 0.086 (2) 0.084 (2) 0.0764 (16) −0.0386 (18) 0.0634 (17) −0.0317 (15)
C14 0.197 (5) 0.094 (2) 0.095 (2) −0.044 (3) 0.103 (3) −0.0047 (18)
C15 0.0597 (19) 0.085 (2) 0.122 (2) −0.0032 (16) 0.0471 (18) −0.0272 (19)

Geometric parameters (Å, º)

O1—C6 1.227 (3) C4—C5 1.375 (3)
O2—C8 1.204 (3) C4—H4A 0.9300
O3—C8 1.334 (3) C5—C6 1.507 (3)
O3—C9 1.442 (4) C7—C8 1.504 (4)
O4—C11 1.225 (2) C7—C10 1.527 (4)
O5—C13 1.189 (4) C7—H7A 0.9800
O6—C13 1.329 (4) C9—H9A 0.9600
O6—C14 1.441 (3) C9—H9B 0.9600
N1—C5 1.340 (3) C9—H9C 0.9600
N1—C1 1.343 (3) C10—H10A 0.9600
N2—C6 1.329 (3) C10—H10B 0.9600
N2—C7 1.445 (3) C10—H10C 0.9600
N2—H1N2 0.83 (3) C12—C13 1.504 (4)
N3—C11 1.331 (3) C12—C15 1.514 (4)
N3—C12 1.449 (3) C12—H12A 0.9800
N3—H1N3 0.85 (2) C14—H14A 0.9600
C1—C2 1.379 (3) C14—H14B 0.9600
C1—C11 1.507 (3) C14—H14C 0.9600
C2—C3 1.383 (4) C15—H15A 0.9600
C2—H2A 0.9300 C15—H15B 0.9600
C3—C4 1.378 (3) C15—H15C 0.9600
C3—H3A 0.9300
C8—O3—C9 117.4 (2) O3—C9—H9A 109.5
C13—O6—C14 116.2 (3) O3—C9—H9B 109.5
C5—N1—C1 117.75 (19) H9A—C9—H9B 109.5
C6—N2—C7 121.9 (2) O3—C9—H9C 109.5
C6—N2—H1N2 119 (2) H9A—C9—H9C 109.5
C7—N2—H1N2 118 (2) H9B—C9—H9C 109.5
C11—N3—C12 122.81 (17) C7—C10—H10A 109.5
C11—N3—H1N3 114.2 (17) C7—C10—H10B 109.5
C12—N3—H1N3 121.7 (17) H10A—C10—H10B 109.5
N1—C1—C2 122.7 (2) C7—C10—H10C 109.5
N1—C1—C11 116.56 (19) H10A—C10—H10C 109.5
C2—C1—C11 120.61 (19) H10B—C10—H10C 109.5
C1—C2—C3 118.7 (2) O4—C11—N3 124.5 (2)
C1—C2—H2A 120.7 O4—C11—C1 120.8 (2)
C3—C2—H2A 120.7 N3—C11—C1 114.65 (17)
C4—C3—C2 119.1 (2) N3—C12—C13 111.0 (2)
C4—C3—H3A 120.4 N3—C12—C15 110.5 (2)
C2—C3—H3A 120.4 C13—C12—C15 112.5 (3)
C5—C4—C3 118.7 (2) N3—C12—H12A 107.5
C5—C4—H4A 120.6 C13—C12—H12A 107.5
C3—C4—H4A 120.6 C15—C12—H12A 107.5
N1—C5—C4 123.0 (2) O5—C13—O6 124.6 (3)
N1—C5—C6 116.8 (2) O5—C13—C12 123.2 (4)
C4—C5—C6 120.1 (2) O6—C13—C12 112.2 (2)
O1—C6—N2 124.0 (2) O6—C14—H14A 109.5
O1—C6—C5 120.5 (2) O6—C14—H14B 109.5
N2—C6—C5 115.5 (2) H14A—C14—H14B 109.5
N2—C7—C8 109.3 (2) O6—C14—H14C 109.5
N2—C7—C10 111.4 (2) H14A—C14—H14C 109.5
C8—C7—C10 111.4 (2) H14B—C14—H14C 109.5
N2—C7—H7A 108.2 C12—C15—H15A 109.5
C8—C7—H7A 108.2 C12—C15—H15B 109.5
C10—C7—H7A 108.2 H15A—C15—H15B 109.5
O2—C8—O3 123.6 (2) C12—C15—H15C 109.5
O2—C8—C7 125.8 (2) H15A—C15—H15C 109.5
O3—C8—C7 110.6 (2) H15B—C15—H15C 109.5
C5—N1—C1—C2 −0.4 (3) C9—O3—C8—C7 −179.5 (2)
C5—N1—C1—C11 175.80 (18) N2—C7—C8—O2 −25.0 (4)
N1—C1—C2—C3 0.0 (4) C10—C7—C8—O2 98.6 (3)
C11—C1—C2—C3 −176.0 (2) N2—C7—C8—O3 156.0 (2)
C1—C2—C3—C4 0.4 (4) C10—C7—C8—O3 −80.5 (3)
C2—C3—C4—C5 −0.4 (4) C12—N3—C11—O4 13.6 (4)
C1—N1—C5—C4 0.3 (3) C12—N3—C11—C1 −165.8 (2)
C1—N1—C5—C6 −179.55 (19) N1—C1—C11—O4 −166.69 (19)
C3—C4—C5—N1 0.1 (4) C2—C1—C11—O4 9.5 (3)
C3—C4—C5—C6 179.9 (2) N1—C1—C11—N3 12.8 (3)
C7—N2—C6—O1 4.1 (4) C2—C1—C11—N3 −171.0 (2)
C7—N2—C6—C5 −176.5 (2) C11—N3—C12—C13 −141.6 (2)
N1—C5—C6—O1 180.0 (2) C11—N3—C12—C15 92.8 (3)
C4—C5—C6—O1 0.1 (4) C14—O6—C13—O5 −0.3 (4)
N1—C5—C6—N2 0.5 (3) C14—O6—C13—C12 178.2 (2)
C4—C5—C6—N2 −179.3 (2) N3—C12—C13—O5 −131.9 (3)
C6—N2—C7—C8 −136.0 (3) C15—C12—C13—O5 −7.5 (4)
C6—N2—C7—C10 100.4 (3) N3—C12—C13—O6 49.5 (3)
C9—O3—C8—O2 1.4 (4) C15—C12—C13—O6 173.9 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H···A D—H H···A D···A D—H···A
N3—H1N3···N1 0.85 (3) 2.23 (3) 2.676 (3) 113 (2)
N3—H1N3···O4i 0.85 (2) 2.35 (2) 3.080 (2) 145 (2)
N2—H1N2···N1 0.84 (3) 2.32 (3) 2.685 (3) 107 (3)
N2—H1N2···O4i 0.83 (3) 2.55 (3) 3.290 (3) 149 (2)
C9—H9B···O2ii 0.96 2.41 3.329 (3) 159
C15—H15B···Cg1iii 0.96 2.78 3.544 (4) 137

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+2; (iii) x+1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6780).

References

  1. Abou-Ghalia, M. H. & Amr, A. E. (2004). Amino Acids, 26, 283–289. [DOI] [PubMed]
  2. Abou-Ghalia, M. H., Amr, A. E. & Abdulla, M. M. (2003). Z. Naturforsch. Teil B, 58, 903–910.
  3. Al-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 4711–4721. [DOI] [PMC free article] [PubMed]
  4. Al-Salahi, R. A., Al-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 6588–6597. [DOI] [PMC free article] [PubMed]
  5. Amr, A. E. (2005). Z. Naturforsch. Teil B, 60, 990–998.
  6. Amr, A. E., Abdel-Latif, N. A. & Abdulla, M. M. (2006). Bioorg. Med. Chem. 14, 373–384. [DOI] [PubMed]
  7. Amr, A. E., Sayed, H. H. & Abdulla, M. M. (2005). Arch. Pharm. Chem. Life Sci. 338, 433–440. [DOI] [PubMed]
  8. Attia, A., Abdel-Salam, O. I., Amr, A. E., Stibor, I. & Budesinsky, M. (2000). Egypt. J. Chem. 43, 187–201.
  9. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  10. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Hammam, A. G., Fahmy, A. F. M., Amr, A. E. & Mohamed, A. M. (2003). Indian J. Chem. Sect. B, 42, 1985–1993.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022258/hb6780sup1.cif

e-68-o1837-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022258/hb6780Isup2.hkl

e-68-o1837-Isup2.hkl (132.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022258/hb6780Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES