Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1839. doi: 10.1107/S1600536812020909

2-Amino-4-(2-chloro­phen­yl)-6-(naph­thalen-1-yl)pyridine-3-carbonitrile

Hong-Xia Wei a, Jing Zhu a, Ming Li a, Jian-qiang Wang a, Cheng Guo b,*
PMCID: PMC3379409  PMID: 22719607

Abstract

In the title compound, C22H14ClN3, prepared by a one-pot reaction under microwave irradiation, the dihedral angles between the central pyridine ring and the pendant naphthyl and chloro­benzene ring systems are 49.2 (2) and 58.2 (3)°, respectively. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R 2 2(8) loops. The pyridine N atom is the acceptor.

Related literature  

For the use of 2-amino-3-cyano­pyridines as inter­mediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983). For the synthesis, see: Mantri et al. (2008). For related structures, see: Mkhalid et al. (2006).graphic file with name e-68-o1839-scheme1.jpg

Experimental  

Crystal data  

  • C22H14ClN3

  • M r = 355.81

  • Monoclinic, Inline graphic

  • a = 12.275 (3) Å

  • b = 4.6490 (9) Å

  • c = 30.887 (6) Å

  • β = 90.18 (3)°

  • V = 1762.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.956, T max = 0.978

  • 3397 measured reflections

  • 3236 independent reflections

  • 1558 reflections with I > 2σ(I)

  • R int = 0.057

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.185

  • S = 1.00

  • 3236 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020909/hb6750sup1.cif

e-68-o1839-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020909/hb6750Isup2.hkl

e-68-o1839-Isup2.hkl (158.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020909/hb6750Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.23 3.086 (5) 176

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The title compound, C22H14ClN3(1), is an intermediate in the synthesis of biologically active molecules (Shishoo et al., 1983; Mantri et al. 2008). Herein we report its crystal structure. The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. In the molecules,the naphthyl (C13—C22) and phenyl ring planes (C1—C6) form torsion angles 49.2 and 58.2 °, respectively, with the middle pyridyl ring plane. In the crystal, there are N—H···N hydrogen bonds, which connect the independent molecules into dimers (Fig. 2 and Tab. 1).

Experimental

For the prepartion of the title compound (1),a mixture of 2-chlorobenzaldehyde (2 mmol), malononitrile (2 mmol), 1-naphthal-dehyde (2 mmol) and ammonium acetate (16 mmol) was refluxed under microwave irradiation (6 min, WF-4000M microwave reaction system). After cooling to room temperature, the resulting solid product was filtered off and recrystallized from methanol to give the title compound. Colourless needles were obtained by dissolving the title compound (0.5 g) in methanol (20 ml) and slowly evaporating the solvent at room temperature for a period of about two weeks.

Refinement

All H atoms were positioned geometrically, with C—H = 0.86 Å and N—H = 0.93 Å for aromatic and amino H, and constrained to ride on their parent atoms,with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C22H14ClN3 F(000) = 736
Mr = 355.81 Dx = 1.341 Mg m3
Monoclinic, P21/n Melting point: 421 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 12.275 (3) Å Cell parameters from 25 reflections
b = 4.6490 (9) Å θ = 9–12°
c = 30.887 (6) Å µ = 0.23 mm1
β = 90.18 (3)° T = 293 K
V = 1762.6 (6) Å3 Needle, colourless
Z = 4 0.20 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1558 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.057
Graphite monochromator θmax = 25.5°, θmin = 1.3°
ω/2θ scans h = −14→0
Absorption correction: ψ scan (North et al., 1968) k = 0→5
Tmin = 0.956, Tmax = 0.978 l = −37→37
3397 measured reflections 3 standard reflections every 200 reflections
3236 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2 + 1.9P] where P = (Fo2 + 2Fc2)/3
3236 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.31710 (12) 0.7045 (4) 0.20602 (4) 0.0872 (5)
N1 0.4498 (3) 0.3780 (9) 0.05627 (11) 0.0550 (10)
C1 0.6080 (4) 0.3185 (13) 0.20923 (15) 0.0773 (16)
H1B 0.6571 0.2335 0.1903 0.093*
N2 0.6054 (3) 0.6314 (10) 0.04127 (11) 0.0763 (14)
H2A 0.5897 0.6189 0.0142 0.092*
H2B 0.6635 0.7198 0.0494 0.092*
C2 0.6330 (5) 0.3305 (14) 0.25299 (16) 0.0863 (18)
H2C 0.6981 0.2532 0.2632 0.104*
N3 0.7314 (4) 0.8313 (12) 0.13555 (14) 0.0968 (17)
C3 0.5613 (5) 0.4568 (15) 0.28131 (17) 0.090 (2)
H3A 0.5779 0.4680 0.3107 0.109*
C4 0.4654 (5) 0.5656 (13) 0.26593 (15) 0.0814 (17)
H4A 0.4162 0.6475 0.2851 0.098*
C5 0.4402 (4) 0.5563 (11) 0.22255 (14) 0.0634 (13)
C6 0.5115 (4) 0.4305 (11) 0.19312 (13) 0.0578 (13)
C7 0.4887 (4) 0.4158 (11) 0.14580 (14) 0.0579 (13)
C8 0.3990 (4) 0.2782 (11) 0.12958 (13) 0.0597 (13)
H8A 0.3499 0.1926 0.1485 0.072*
C9 0.3800 (3) 0.2645 (10) 0.08536 (13) 0.0507 (11)
C10 0.5383 (4) 0.5115 (11) 0.07123 (14) 0.0542 (12)
C11 0.5606 (3) 0.5421 (11) 0.11589 (14) 0.0568 (12)
C12 0.6549 (4) 0.7022 (13) 0.12856 (14) 0.0673 (15)
C13 0.2812 (4) 0.1290 (10) 0.06732 (14) 0.0533 (12)
C14 0.1748 (4) 0.1886 (11) 0.08349 (14) 0.0577 (13)
C15 0.1539 (4) 0.3973 (12) 0.11570 (15) 0.0682 (14)
H15A 0.2113 0.5015 0.1276 0.082*
C16 0.0499 (5) 0.4471 (14) 0.12953 (18) 0.0842 (17)
H16A 0.0379 0.5848 0.1508 0.101*
C17 −0.0383 (5) 0.2979 (16) 0.11261 (19) 0.090 (2)
H17A −0.1083 0.3344 0.1226 0.108*
C18 −0.0217 (4) 0.0997 (14) 0.08151 (19) 0.0807 (17)
H18A −0.0808 −0.0007 0.0702 0.097*
C19 0.0835 (4) 0.0418 (12) 0.06576 (16) 0.0629 (13)
C20 0.1015 (4) −0.1567 (12) 0.03181 (17) 0.0735 (15)
H20A 0.0425 −0.2559 0.0202 0.088*
C21 0.2025 (4) −0.2061 (11) 0.01577 (15) 0.0679 (14)
H21A 0.2118 −0.3334 −0.0071 0.082*
C22 0.2927 (4) −0.0649 (11) 0.03379 (15) 0.0613 (13)
H22A 0.3618 −0.1027 0.0229 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0919 (10) 0.1025 (12) 0.0674 (9) 0.0187 (9) 0.0206 (7) −0.0003 (8)
N1 0.057 (2) 0.066 (3) 0.042 (2) 0.005 (2) 0.0057 (17) 0.003 (2)
C1 0.086 (4) 0.095 (4) 0.051 (3) 0.012 (3) −0.004 (3) −0.004 (3)
N2 0.065 (3) 0.118 (4) 0.046 (2) −0.017 (3) 0.0128 (19) −0.002 (3)
C2 0.100 (4) 0.106 (5) 0.052 (3) −0.009 (4) −0.012 (3) 0.006 (4)
N3 0.075 (3) 0.137 (5) 0.079 (3) −0.029 (3) 0.009 (3) −0.024 (3)
C3 0.100 (5) 0.123 (6) 0.049 (3) −0.024 (4) −0.007 (3) 0.008 (4)
C4 0.105 (4) 0.100 (5) 0.039 (3) −0.011 (4) 0.013 (3) −0.007 (3)
C5 0.073 (3) 0.072 (4) 0.045 (3) −0.006 (3) 0.011 (2) 0.002 (3)
C6 0.073 (3) 0.064 (3) 0.036 (2) −0.002 (3) 0.006 (2) 0.001 (2)
C7 0.064 (3) 0.066 (3) 0.043 (3) 0.009 (3) 0.003 (2) 0.000 (2)
C8 0.069 (3) 0.072 (3) 0.038 (2) −0.004 (3) 0.009 (2) 0.002 (3)
C9 0.057 (3) 0.053 (3) 0.042 (2) 0.006 (2) 0.009 (2) 0.008 (2)
C10 0.050 (3) 0.069 (3) 0.044 (3) 0.006 (3) 0.007 (2) 0.000 (2)
C11 0.051 (3) 0.074 (3) 0.046 (3) 0.006 (3) 0.006 (2) −0.008 (3)
C12 0.066 (3) 0.094 (4) 0.041 (3) −0.001 (3) 0.007 (2) −0.012 (3)
C13 0.060 (3) 0.057 (3) 0.042 (2) 0.004 (3) 0.000 (2) 0.011 (2)
C14 0.057 (3) 0.066 (3) 0.050 (3) 0.005 (3) 0.011 (2) 0.021 (3)
C15 0.069 (3) 0.080 (4) 0.056 (3) 0.003 (3) 0.010 (2) 0.015 (3)
C16 0.083 (4) 0.100 (5) 0.069 (4) 0.020 (4) 0.016 (3) 0.009 (3)
C17 0.067 (4) 0.121 (6) 0.083 (4) 0.021 (4) 0.019 (3) 0.031 (4)
C18 0.058 (3) 0.092 (5) 0.092 (4) 0.000 (3) 0.004 (3) 0.027 (4)
C19 0.062 (3) 0.062 (3) 0.064 (3) −0.001 (3) −0.001 (2) 0.018 (3)
C20 0.070 (3) 0.071 (4) 0.080 (4) −0.001 (3) −0.014 (3) 0.007 (3)
C21 0.090 (4) 0.063 (3) 0.051 (3) 0.007 (3) −0.004 (3) −0.003 (3)
C22 0.063 (3) 0.063 (3) 0.058 (3) 0.001 (3) −0.007 (2) 0.007 (3)

Geometric parameters (Å, º)

Cl—C5 1.736 (5) C9—C13 1.475 (6)
N1—C10 1.332 (5) C10—C11 1.413 (6)
N1—C9 1.351 (5) C11—C12 1.429 (7)
C1—C6 1.385 (6) C13—C22 1.380 (6)
C1—C2 1.386 (6) C13—C14 1.427 (6)
C1—H1B 0.9300 C14—C15 1.414 (7)
N2—C10 1.360 (5) C14—C19 1.421 (6)
N2—H2A 0.8600 C15—C16 1.367 (6)
N2—H2B 0.8600 C15—H15A 0.9300
C2—C3 1.375 (7) C16—C17 1.386 (8)
C2—H2C 0.9300 C16—H16A 0.9300
N3—C12 1.134 (6) C17—C18 1.347 (8)
C3—C4 1.365 (7) C17—H17A 0.9300
C3—H3A 0.9300 C18—C19 1.407 (6)
C4—C5 1.375 (6) C18—H18A 0.9300
C4—H4A 0.9300 C19—C20 1.414 (7)
C5—C6 1.392 (6) C20—C21 1.356 (6)
C6—C7 1.489 (6) C20—H20A 0.9300
C7—C8 1.367 (6) C21—C22 1.401 (6)
C7—C11 1.408 (6) C21—H21A 0.9300
C8—C9 1.386 (5) C22—H22A 0.9300
C8—H8A 0.9300
C10—N1—C9 118.0 (4) C7—C11—C10 118.6 (4)
C6—C1—C2 121.4 (5) C7—C11—C12 123.1 (4)
C6—C1—H1B 119.3 C10—C11—C12 118.3 (4)
C2—C1—H1B 119.3 N3—C12—C11 175.1 (5)
C10—N2—H2A 120.0 C22—C13—C14 119.0 (4)
C10—N2—H2B 120.0 C22—C13—C9 118.5 (4)
H2A—N2—H2B 120.0 C14—C13—C9 122.5 (4)
C3—C2—C1 119.8 (5) C15—C14—C19 117.1 (4)
C3—C2—H2C 120.1 C15—C14—C13 123.2 (5)
C1—C2—H2C 120.1 C19—C14—C13 119.6 (5)
C4—C3—C2 119.3 (5) C16—C15—C14 120.5 (5)
C4—C3—H3A 120.3 C16—C15—H15A 119.7
C2—C3—H3A 120.3 C14—C15—H15A 119.7
C3—C4—C5 121.3 (5) C15—C16—C17 121.7 (6)
C3—C4—H4A 119.4 C15—C16—H16A 119.1
C5—C4—H4A 119.4 C17—C16—H16A 119.1
C4—C5—C6 120.6 (5) C18—C17—C16 119.4 (5)
C4—C5—Cl 117.8 (4) C18—C17—H17A 120.3
C6—C5—Cl 121.5 (4) C16—C17—H17A 120.3
C1—C6—C5 117.5 (4) C17—C18—C19 121.2 (6)
C1—C6—C7 119.5 (4) C17—C18—H18A 119.4
C5—C6—C7 122.9 (4) C19—C18—H18A 119.4
C8—C7—C11 117.4 (4) C18—C19—C20 121.8 (5)
C8—C7—C6 122.0 (4) C18—C19—C14 119.9 (5)
C11—C7—C6 120.6 (4) C20—C19—C14 118.3 (5)
C7—C8—C9 121.0 (4) C21—C20—C19 121.8 (5)
C7—C8—H8A 119.5 C21—C20—H20A 119.1
C9—C8—H8A 119.5 C19—C20—H20A 119.1
N1—C9—C8 122.2 (4) C20—C21—C22 119.9 (5)
N1—C9—C13 116.0 (4) C20—C21—H21A 120.1
C8—C9—C13 121.8 (4) C22—C21—H21A 120.1
N1—C10—N2 116.7 (4) C13—C22—C21 121.4 (5)
N1—C10—C11 122.8 (4) C13—C22—H22A 119.3
N2—C10—C11 120.5 (4) C21—C22—H22A 119.3
C6—C1—C2—C3 −0.3 (9) N1—C10—C11—C12 −176.8 (5)
C1—C2—C3—C4 0.9 (9) N2—C10—C11—C12 0.1 (7)
C2—C3—C4—C5 −1.3 (10) C7—C11—C12—N3 178 (7)
C3—C4—C5—C6 1.1 (9) C10—C11—C12—N3 −3 (7)
C3—C4—C5—Cl −179.2 (5) N1—C9—C13—C22 48.9 (6)
C2—C1—C6—C5 0.1 (8) C8—C9—C13—C22 −132.1 (5)
C2—C1—C6—C7 179.3 (5) N1—C9—C13—C14 −131.7 (4)
C4—C5—C6—C1 −0.5 (8) C8—C9—C13—C14 47.3 (6)
Cl—C5—C6—C1 179.8 (4) C22—C13—C14—C15 −175.7 (4)
C4—C5—C6—C7 −179.6 (5) C9—C13—C14—C15 5.0 (7)
Cl—C5—C6—C7 0.7 (7) C22—C13—C14—C19 1.8 (6)
C1—C6—C7—C8 121.2 (6) C9—C13—C14—C19 −177.5 (4)
C5—C6—C7—C8 −59.7 (7) C19—C14—C15—C16 1.6 (7)
C1—C6—C7—C11 −58.1 (7) C13—C14—C15—C16 179.2 (4)
C5—C6—C7—C11 121.1 (5) C14—C15—C16—C17 −0.3 (8)
C11—C7—C8—C9 0.0 (7) C15—C16—C17—C18 −0.5 (9)
C6—C7—C8—C9 −179.3 (4) C16—C17—C18—C19 −0.2 (9)
C10—N1—C9—C8 −1.3 (7) C17—C18—C19—C20 −177.2 (5)
C10—N1—C9—C13 177.7 (4) C17—C18—C19—C14 1.6 (8)
C7—C8—C9—N1 1.8 (7) C15—C14—C19—C18 −2.2 (7)
C7—C8—C9—C13 −177.1 (5) C13—C14—C19—C18 −179.9 (4)
C9—N1—C10—N2 −178.0 (4) C15—C14—C19—C20 176.6 (4)
C9—N1—C10—C11 −1.0 (7) C13—C14—C19—C20 −1.1 (7)
C8—C7—C11—C10 −2.1 (7) C18—C19—C20—C21 178.0 (5)
C6—C7—C11—C10 177.1 (4) C14—C19—C20—C21 −0.8 (7)
C8—C7—C11—C12 177.4 (5) C19—C20—C21—C22 1.9 (8)
C6—C7—C11—C12 −3.4 (7) C14—C13—C22—C21 −0.7 (7)
N1—C10—C11—C7 2.7 (7) C9—C13—C22—C21 178.6 (4)
N2—C10—C11—C7 179.6 (4) C20—C21—C22—C13 −1.1 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N1i 0.86 2.23 3.086 (5) 176

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6750).

References

  1. Enraf–Nonius (1994). CAD-4 XPRESS. Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Mantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449–4455.
  4. Mkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489–491. [DOI] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611–4612.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020909/hb6750sup1.cif

e-68-o1839-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020909/hb6750Isup2.hkl

e-68-o1839-Isup2.hkl (158.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020909/hb6750Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES