Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1847. doi: 10.1107/S1600536812022362

2-Amino-N′-phenyl­benzohydrazide

Víctor Kesternich a, Paulo Gahona a, Marcia Pérez-Fehrmann a, Iván Brito b,*, Matías López-Rodríguez c
PMCID: PMC3379416  PMID: 22719614

Abstract

In the title compound, C13H13N3O, the NNCO unit forms dihedral angles of 35.8 (1) and 84.0 (1)° with the benzene and phenyl rings, respectively. The dihedral angles between the aromatic rings is 61.2 (1)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by weak N—H⋯O hydrogen bonds into C(4) chains parallel to the c axis. Neighbouring chains are linked by weak N—H⋯N hydrogen bonds, forming R 4 4(20) rings, and resulting in the formation of a two-dimensional network lying parallel to (010). The packing also features π–π stacking inter­actions between phenyl rings [centroid–centroid distance = 3.803 (2) Å].

Related literature  

For the pharmacological activity of quinazolinones, see: Kamal et al. (2010) and of benzotriazepinones, see: Filippakopoulos et al. (2012); Spencer et al. (2008). For the synthesis of the starting material 1H-benzo[d][1,3]oxazine-2,4-dione, see: Iwakura et al. (1976); Leiby & Heindel (1976). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1847-scheme1.jpg

Experimental  

Crystal data  

  • C13H13N3O

  • M r = 227.26

  • Monoclinic, Inline graphic

  • a = 6.1190 (12) Å

  • b = 19.921 (4) Å

  • c = 9.6490 (19) Å

  • β = 94.08 (3)°

  • V = 1173.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.21 × 0.10 mm

Data collection  

  • Nonius KappaCCD area-detector diffractometer

  • 17096 measured reflections

  • 2923 independent reflections

  • 2330 reflections with I > 2σ(I)

  • R int = 0.092

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.163

  • S = 1.09

  • 2923 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022362/ds2196sup1.cif

e-68-o1847-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022362/ds2196Isup2.hkl

e-68-o1847-Isup2.hkl (140.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022362/ds2196Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.07 2.903 (2) 162
N3—H3A⋯O1 0.86 (3) 2.21 (3) 2.845 (2) 131 (2)
N2—H2⋯N3ii 0.86 2.54 3.126 (3) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database (CSD).

supplementary crystallographic information

Comment

The 2-amino-N'-phenylbenzohydrazide 2 is a key intermediate to obtain quinazolinones and benzotriazepines derivatives. The quinazolinone nucleous and its derivatives have been extensively studied because of their wide range of pharmacological activities, including antiviral, antibacterial, antifungal, antimalarial, anticancer, antihypertensive, diuretic, anticonvulsant and anti-inflammatory (Kamal et al., 2010). On the other hand, the benzotriazepinones have been described as efficient enzymatic inhibitors (Filippakopoulos et al., 2012; Spencer et al., 2008). We report herein on the synthesis and crystal structure of the title compound, a member of this important family of compounds. In the title molecule, Fig. 1, the NNCO moiety form a dihedral angle of 35.8 (1)° and 84.0 (1)° with benzene and phenyl rings respectively. The dihedral angles between the aromatic rings is 61.2 (1)°. In the crystal the molecules are packed viaπ–π stacking interaction [centroid–centroid distance 3.803 (2) Å] and linked by N1—H1···O1(x, -y + 3/2, z + 1/2) weak hydrogen bond to form a C(4) chain running parallel to the c axis, which are linked to neighboring chains by N2—H3···N3(x - 1, y, z) weak hydrogen bond to form R44(20) centrosymmetric rings (Bernstein et al., 1995). One intramolecular N—H···O hydrogen bond is observed too, Fig.2, Table1.

Experimental

The synthesis of the 2-amino-N'-phenylbenzohydrazide 2 was done starting of isatoic anhydride (1H-benzo[d][1,3]oxazine-2,4-dione) (Leiby & Heindel 1976; Iwakura et al., 1976), which was treated with phenyl hydrazine in DMF at reflux by 2 h to give an 82% yield. The product was crystallized in ethyl acetate with melting point 227–228 °C. UV λ(MeOH) 310, 280 and 225 nm, λ(MeONa) 340, 265 and 225 nm. IR cm-1, (Nujol), 3300 (NH), 1670 (carbonyl).

Refinement

The H-atoms could be located in difference Fourier maps. H3A and H3B atoms parameters were freely refined. The remaining H atoms, were positioned geometrically and treated using a riding model with N—H = 0.86 Å, C—H = 0.93 with Uiso(H) = k × Ueq(N,C), where k = 1.2 for both atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial view along the c axis of the crystal packing of the title compound, showing the formation of the N—H··· O hydrogen bonded chain and the centrosymmetric R44 (20) rings [see Table 1 for details; the H-atoms not involved in hydrogen-bonding have been omitted for clarity]

Crystal data

C13H13N3O F(000) = 480
Mr = 227.26 Dx = 1.287 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2923 reflections
a = 6.1190 (12) Å θ = 3.9–28.6°
b = 19.921 (4) Å µ = 0.09 mm1
c = 9.6490 (19) Å T = 293 K
β = 94.08 (3)° Block, colourless
V = 1173.2 (4) Å3 0.40 × 0.21 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer 2330 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.092
Graphite monochromator θmax = 28.6°, θmin = 3.9°
φ and ω scans with κ offsets h = 0→8
17096 measured reflections k = 0→26
2923 independent reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.7268P] where P = (Fo2 + 2Fc2)/3
2923 reflections (Δ/σ)max < 0.001
162 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6118 (2) 0.71063 (8) 0.36635 (13) 0.0430 (4)
N1 0.5506 (3) 0.73222 (8) 0.58950 (15) 0.0377 (4)
H1 0.5943 0.7527 0.6648 0.045*
N2 0.3725 (3) 0.68841 (9) 0.59083 (17) 0.0407 (4)
H2 0.2401 0.7021 0.5736 0.049*
N3 1.0637 (3) 0.73656 (12) 0.3383 (2) 0.0499 (5)
H3A 0.956 (5) 0.7108 (13) 0.312 (3) 0.059 (8)*
H3B 1.161 (5) 0.7445 (14) 0.273 (3) 0.073 (8)*
C1 0.6555 (3) 0.74322 (9) 0.47424 (17) 0.0313 (4)
C2 0.8220 (3) 0.79772 (9) 0.48509 (17) 0.0323 (4)
C3 0.7862 (3) 0.85526 (10) 0.5633 (2) 0.0421 (5)
H3 0.6585 0.8587 0.6095 0.051*
C4 0.9359 (4) 0.90690 (12) 0.5732 (3) 0.0560 (6)
H4 0.9095 0.9450 0.6253 0.067*
C5 1.1263 (4) 0.90142 (13) 0.5046 (3) 0.0575 (6)
H5 1.2291 0.9359 0.5115 0.069*
C6 1.1644 (3) 0.84588 (12) 0.4269 (2) 0.0483 (5)
H6 1.2936 0.8431 0.3820 0.058*
C7 1.0137 (3) 0.79316 (10) 0.41334 (18) 0.0364 (4)
C8 0.4207 (3) 0.62058 (11) 0.62176 (19) 0.0387 (4)
C9 0.6191 (4) 0.59962 (12) 0.6849 (2) 0.0484 (5)
H9 0.7320 0.6304 0.7030 0.058*
C10 0.6494 (5) 0.53310 (14) 0.7208 (3) 0.0668 (7)
H10 0.7826 0.5195 0.7642 0.080*
C11 0.4861 (6) 0.48666 (14) 0.6935 (3) 0.0756 (9)
H11 0.5089 0.4417 0.7165 0.091*
C12 0.2896 (6) 0.50745 (15) 0.6322 (3) 0.0744 (9)
H12 0.1780 0.4763 0.6141 0.089*
C13 0.2535 (4) 0.57384 (14) 0.5967 (2) 0.0574 (6)
H13 0.1181 0.5873 0.5562 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0418 (8) 0.0618 (9) 0.0262 (6) −0.0055 (7) 0.0065 (5) −0.0045 (6)
N1 0.0373 (8) 0.0497 (10) 0.0269 (7) −0.0088 (7) 0.0078 (6) −0.0030 (6)
N2 0.0271 (8) 0.0565 (11) 0.0392 (9) −0.0040 (7) 0.0075 (6) 0.0005 (7)
N3 0.0307 (9) 0.0768 (14) 0.0433 (10) 0.0021 (9) 0.0102 (8) −0.0160 (9)
C1 0.0273 (8) 0.0423 (10) 0.0244 (8) 0.0062 (7) 0.0036 (6) 0.0025 (7)
C2 0.0314 (9) 0.0411 (10) 0.0247 (8) 0.0037 (7) 0.0042 (6) 0.0069 (7)
C3 0.0428 (11) 0.0431 (11) 0.0416 (11) 0.0052 (9) 0.0110 (8) 0.0008 (8)
C4 0.0652 (15) 0.0420 (12) 0.0619 (14) −0.0052 (11) 0.0122 (12) −0.0036 (10)
C5 0.0571 (14) 0.0535 (14) 0.0623 (15) −0.0169 (11) 0.0069 (11) 0.0088 (11)
C6 0.0358 (10) 0.0681 (15) 0.0418 (11) −0.0061 (10) 0.0080 (8) 0.0098 (10)
C7 0.0312 (9) 0.0518 (11) 0.0264 (8) 0.0050 (8) 0.0029 (7) 0.0054 (7)
C8 0.0369 (10) 0.0527 (12) 0.0277 (9) −0.0090 (9) 0.0110 (7) −0.0053 (8)
C9 0.0466 (12) 0.0556 (13) 0.0429 (11) −0.0047 (10) 0.0032 (9) −0.0023 (9)
C10 0.0792 (18) 0.0638 (17) 0.0579 (15) 0.0090 (14) 0.0075 (13) 0.0107 (12)
C11 0.115 (3) 0.0522 (16) 0.0625 (17) −0.0101 (17) 0.0263 (17) 0.0061 (12)
C12 0.094 (2) 0.0721 (19) 0.0589 (16) −0.0427 (17) 0.0213 (15) −0.0099 (13)
C13 0.0503 (13) 0.0728 (17) 0.0496 (13) −0.0242 (12) 0.0069 (10) −0.0072 (11)

Geometric parameters (Å, º)

O1—C1 1.240 (2) C5—C6 1.366 (4)
N1—C1 1.341 (2) C5—H5 0.9300
N1—N2 1.397 (2) C6—C7 1.397 (3)
N1—H1 0.8600 C6—H6 0.9300
N2—C8 1.411 (3) C8—C9 1.384 (3)
N2—H2 0.8600 C8—C13 1.392 (3)
N3—C7 1.386 (3) C9—C10 1.379 (4)
N3—H3A 0.86 (3) C9—H9 0.9300
N3—H3B 0.91 (3) C10—C11 1.374 (4)
C1—C2 1.487 (3) C10—H10 0.9300
C2—C3 1.398 (3) C11—C12 1.366 (5)
C2—C7 1.407 (2) C11—H11 0.9300
C3—C4 1.376 (3) C12—C13 1.380 (4)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.385 (4) C13—H13 0.9300
C4—H4 0.9300
C1—N1—N2 121.98 (15) C5—C6—C7 121.5 (2)
C1—N1—H1 119.0 C5—C6—H6 119.2
N2—N1—H1 119.0 C7—C6—H6 119.2
N1—N2—C8 116.67 (15) N3—C7—C6 119.45 (18)
N1—N2—H2 121.7 N3—C7—C2 122.17 (19)
C8—N2—H2 121.7 C6—C7—C2 118.23 (18)
C7—N3—H3A 116.4 (18) C9—C8—C13 119.1 (2)
C7—N3—H3B 113.5 (18) C9—C8—N2 123.09 (18)
H3A—N3—H3B 115 (3) C13—C8—N2 117.7 (2)
O1—C1—N1 121.54 (17) C10—C9—C8 119.9 (2)
O1—C1—C2 123.18 (16) C10—C9—H9 120.0
N1—C1—C2 115.26 (15) C8—C9—H9 120.0
C3—C2—C7 119.10 (18) C11—C10—C9 121.1 (3)
C3—C2—C1 120.27 (16) C11—C10—H10 119.5
C7—C2—C1 120.60 (17) C9—C10—H10 119.5
C4—C3—C2 121.46 (19) C12—C11—C10 119.0 (3)
C4—C3—H3 119.3 C12—C11—H11 120.5
C2—C3—H3 119.3 C10—C11—H11 120.5
C3—C4—C5 119.1 (2) C11—C12—C13 121.2 (3)
C3—C4—H4 120.5 C11—C12—H12 119.4
C5—C4—H4 120.5 C13—C12—H12 119.4
C6—C5—C4 120.6 (2) C12—C13—C8 119.7 (3)
C6—C5—H5 119.7 C12—C13—H13 120.2
C4—C5—H5 119.7 C8—C13—H13 120.2
C1—N1—N2—C8 89.2 (2) C3—C2—C7—N3 177.46 (18)
N2—N1—C1—O1 −6.4 (3) C1—C2—C7—N3 −4.6 (3)
N2—N1—C1—C2 172.28 (16) C3—C2—C7—C6 1.9 (3)
O1—C1—C2—C3 142.55 (19) C1—C2—C7—C6 179.85 (16)
N1—C1—C2—C3 −36.1 (2) N1—N2—C8—C9 17.7 (3)
O1—C1—C2—C7 −35.3 (3) N1—N2—C8—C13 −167.37 (17)
N1—C1—C2—C7 146.01 (17) C13—C8—C9—C10 0.6 (3)
C7—C2—C3—C4 −1.0 (3) N2—C8—C9—C10 175.5 (2)
C1—C2—C3—C4 −178.95 (19) C8—C9—C10—C11 0.8 (4)
C2—C3—C4—C5 −0.3 (3) C9—C10—C11—C12 −1.3 (4)
C3—C4—C5—C6 0.7 (4) C10—C11—C12—C13 0.4 (4)
C4—C5—C6—C7 0.3 (4) C11—C12—C13—C8 0.9 (4)
C5—C6—C7—N3 −177.3 (2) C9—C8—C13—C12 −1.4 (3)
C5—C6—C7—C2 −1.6 (3) N2—C8—C13—C12 −176.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.07 2.903 (2) 162
N3—H3A···O1 0.86 (3) 2.21 (3) 2.845 (2) 131 (2)
N2—H2···N3ii 0.86 2.54 3.126 (3) 126

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2196).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Filippakopoulos, P., Picaud, S., Fedorov, O., Keller, M., Wrobel, M., Morgenstern, O., Bracher, F. & Stefan Knapp, S. (2012). Bioorg. Med. Chem. 20, 1878–1886. [DOI] [PMC free article] [PubMed]
  5. Iwakura, Y., Uno, K. & Kang, S. (1976). J. Org. Chem. 31, 142–146.
  6. Kamal, A., Bharathi, E. V., Ramaiah, M. J., Dastagiri, D., Reddy, J. S., Viswanath, A., Sultana, F., Pushpavalli, S., Pal-Bhadra, M., Srivastava, H. K., Sastry, G. N., Juvekar, A., Sen, S. & Zingde, S. (2010). Bioorg. Med. Chem. 18, 526–542. [DOI] [PubMed]
  7. Leiby, R. W. & Heindel, N. D. (1976). J. Org. Chem. 41, 2736–2739.
  8. Nonius (2000). COLLECT BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York; Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spencer, J., Gaffen, J., Griffin, E., Harper, E. A., Linney, I. D., McDonald, I. M., Roberts, S. P., Shaxted, M. E., Adatia, T. & Bashall, A. (2008). Bioorg. Med. Chem. 16, 2974–2983. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022362/ds2196sup1.cif

e-68-o1847-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022362/ds2196Isup2.hkl

e-68-o1847-Isup2.hkl (140.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022362/ds2196Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES