Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1848–o1849. doi: 10.1107/S1600536812022659

1-{(E)-[3-(1H-Imidazol-1-yl)-1-phenyl­propyl­idene]amino}-3-(2-methyl­phen­yl)urea

Mohamed I Attia a,b,, Mohamed N Aboul-Enein b, Nasser R El-Brollosy a, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3379417  PMID: 22719615

Abstract

In the title compound, C20H21N5O, the conformation about the imine bond [1.289 (3) Å] is E. Overall, the mol­ecule is disk-shaped with the imidazole ring located above the remainder of the mol­ecule and with the dihedral angles of 10.97 (15) and 12.11 (15)°, respectively, between the imidazole ring and the phenyl and methyl­benzene rings; the dihedral angle between the aromatic rings is 8.17 (14)°. Within the urea unit, the N—H atoms are anti to each other and one of the N—H atoms forms an intra­molecular N—H⋯N hydrogen bond. Helical supra­molecular chains along [001] are formed via N—H⋯N(imidazole) hydrogen bonds in the crystal structure. These are connected into a three-dimensional architecture by C—H⋯O(carbon­yl) and C—H⋯π inter­actions.

Related literature  

For background to epilepsy and epilepsy drugs see: Sander & Shorvon (1987); Saxena & Saxena (1995); Edafiogho & Scott (1996). For the use of aryl semicarbazones as anti-convulsants see: Aboul-Enein et al. (2012); Dimmock et al. (1993, 1995). For a related structure see: Attia et al. (2012).graphic file with name e-68-o1848-scheme1.jpg

Experimental  

Crystal data  

  • C20H21N5O

  • M r = 347.42

  • Orthorhombic, Inline graphic

  • a = 20.5220 (17) Å

  • b = 14.1916 (11) Å

  • c = 6.0060 (4) Å

  • V = 1749.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.08 × 0.04 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.805, T max = 1.000

  • 8422 measured reflections

  • 2211 independent reflections

  • 1809 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.097

  • S = 1.02

  • 2211 reflections

  • 244 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022659/mw2069sup1.cif

e-68-o1848-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022659/mw2069Isup2.hkl

e-68-o1848-Isup2.hkl (108.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022659/mw2069Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C10–C15 and N4,N5,C18–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3 0.88 (1) 2.12 (3) 2.601 (3) 114 (2)
N2—H2n⋯N5i 0.89 (1) 2.03 (1) 2.884 (3) 161 (3)
C5—H5⋯O1ii 0.95 2.49 3.416 (3) 164
C7—H7BCg1iii 0.98 2.82 3.686 (3) 148
C12—H12⋯Cg1iv 0.95 2.72 3.464 (3) 135
C20—H20⋯Cg2i 0.95 2.85 3.604 (3) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The title compound, (2E)-2-[3-(1H-imidazol-1-yl)-1-phenylpropylidene]-N-(2-methylphenyl)hydrazinecarboxamide (I) will be evaluated as anti-convulsant in experimental animal models for which structural information is desirable. The motivation for its study is the observation that aryl semicarbazones can exhibit significant anti-convulsant activities (Aboul-Enein et al., 2012; Dimmock et al., 1995; Dimmock et al., 1993). Epilepsy is one of the most widespread pathologies of human brain, affecting approximately 1% of world population (Sander & Shorvon, 1987). The need for new drugs arises as currently used anti-epileptic drugs suffer from a number of disadvantages including the fact that approximately one quarter of epileptic patients have seizures that are resistant to the available medical therapies (Saxena & Saxena, 1995). Aside from that, many anti-epileptics used clinically cause significant side-effects (Edafiogho & Scott, 1996).

In (I), Fig. 1, the conformation about the N3═C9 bond [1.289 (3) Å] is E. The dihedral angles between the imidazolyl ring and the phenyl and methylbenzene rings are 10.97 (15) and 12.11 (15)°, respectively; the dihedral angle between the phenyl and benzene rings is 8.17 (14)°. Overall, the main part of the molecule, excepting the imidazolyl substituent, appears flat and is significantly flatter than the recently determined 4-methoxybenzene analogue (Attia et al., 2012). Within the urea moiety, the N—H atoms are anti to each other and the N1—H atom forms an intramolecular N—H···N hydrogen bond which defines a S(5) loop, Table 1.

In the crystal structure, helical supramolecular chains along [001] are formed via N—H···N(imidazolyl) hydrogen bonds, Fig. 2 and Table 1. These are connected into a three-dimensional architecture by CH···O(carbonyl) and C—H···π interactions, Fig. 3 and Table 1.

Experimental

Acetic acid (2 drops) was added to a stirred solution of 3-(1H-imidazol-1-yl)-1-phenyl-propan-1-one (0.20 g, 1 mmol) and N-(2-methylphenyl)hydrazinecarboxamide (0.17 g, 1 mmol) in absolute ethanol (10 mL). The reaction mixture was stirred at room temperature for 18 h. The solution was concentrated under vacuum and the precipitated solid was filtered off. The collected solid was recrystallized from ethanol to give crystals of the title compound; M.P.: 453–455 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were refined with N—H = 0.88±0.01 Å. In the absence of significant anomalous scattering effects, 1613 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the helical supramolecular chain along [001] in (I) mediated by N—H···N hydrogen bonding, shown as blue dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the c axis of the unit-cell contents for (I). The N—H···N, C—H···O and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.

Crystal data

C20H21N5O F(000) = 736
Mr = 347.42 Dx = 1.319 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 2304 reflections
a = 20.5220 (17) Å θ = 2.5–27.5°
b = 14.1916 (11) Å µ = 0.09 mm1
c = 6.0060 (4) Å T = 100 K
V = 1749.2 (2) Å3 Prism, colourless
Z = 4 0.40 × 0.08 × 0.04 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2211 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1809 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.057
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.5°
ω scan h = −26→25
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −18→14
Tmin = 0.805, Tmax = 1.000 l = −7→7
8422 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.4249P] where P = (Fo2 + 2Fc2)/3
2211 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.19 e Å3
3 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.16812 (10) 0.91634 (13) 1.0006 (3) 0.0235 (5)
N1 0.19630 (12) 0.75898 (15) 1.0029 (4) 0.0190 (5)
H1n 0.1888 (15) 0.7078 (14) 0.925 (5) 0.029 (9)*
N2 0.12686 (12) 0.81951 (15) 0.7377 (4) 0.0198 (5)
H2n 0.1117 (13) 0.8684 (14) 0.662 (4) 0.016 (8)*
N3 0.12298 (12) 0.72925 (16) 0.6568 (4) 0.0180 (5)
N4 −0.04027 (11) 0.86786 (16) 0.2322 (4) 0.0196 (5)
N5 −0.08081 (12) 0.99922 (16) 0.0881 (4) 0.0213 (5)
C1 0.23540 (14) 0.7509 (2) 1.1950 (4) 0.0179 (6)
C2 0.24925 (15) 0.8274 (2) 1.3333 (5) 0.0214 (6)
H2 0.2335 0.8884 1.2963 0.026*
C3 0.28578 (14) 0.8145 (2) 1.5240 (5) 0.0241 (7)
H3 0.2945 0.8666 1.6188 0.029*
C4 0.30981 (16) 0.7261 (2) 1.5779 (5) 0.0241 (7)
H4 0.3350 0.7174 1.7090 0.029*
C5 0.29672 (14) 0.65011 (19) 1.4380 (5) 0.0218 (6)
H5 0.3132 0.5896 1.4753 0.026*
C6 0.26012 (13) 0.66097 (19) 1.2451 (5) 0.0185 (6)
C7 0.24667 (14) 0.57690 (18) 1.0977 (5) 0.0209 (6)
H7A 0.2613 0.5905 0.9458 0.031*
H7B 0.1998 0.5638 1.0967 0.031*
H7C 0.2702 0.5219 1.1550 0.031*
C8 0.16516 (13) 0.83647 (19) 0.9221 (4) 0.0186 (6)
C9 0.09415 (13) 0.71323 (19) 0.4699 (5) 0.0177 (6)
C10 0.09067 (13) 0.61251 (19) 0.4007 (5) 0.0171 (6)
C11 0.06162 (14) 0.58577 (19) 0.1998 (5) 0.0196 (6)
H11 0.0447 0.6328 0.1033 0.023*
C12 0.05714 (14) 0.4915 (2) 0.1391 (5) 0.0230 (7)
H12 0.0368 0.4746 0.0026 0.028*
C13 0.08204 (15) 0.4225 (2) 0.2759 (5) 0.0242 (7)
H13 0.0787 0.3581 0.2344 0.029*
C14 0.11191 (14) 0.4473 (2) 0.4744 (5) 0.0251 (7)
H14 0.1293 0.3998 0.5687 0.030*
C15 0.11650 (15) 0.54123 (19) 0.5355 (5) 0.0226 (6)
H15 0.1375 0.5575 0.6711 0.027*
C16 0.06317 (14) 0.78834 (19) 0.3273 (4) 0.0181 (6)
H16A 0.0663 0.7698 0.1688 0.022*
H16B 0.0872 0.8482 0.3465 0.022*
C17 −0.00841 (14) 0.80344 (19) 0.3886 (5) 0.0217 (6)
H17A −0.0314 0.7421 0.3874 0.026*
H17B −0.0113 0.8297 0.5410 0.026*
C18 −0.06042 (14) 0.8465 (2) 0.0194 (5) 0.0220 (6)
H18 −0.0575 0.7871 −0.0529 0.026*
C19 −0.08538 (14) 0.92777 (19) −0.0665 (5) 0.0220 (6)
H19 −0.1033 0.9342 −0.2116 0.026*
C20 −0.05398 (14) 0.96020 (19) 0.2651 (5) 0.0206 (6)
H20 −0.0453 0.9930 0.3998 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0321 (11) 0.0115 (9) 0.0270 (11) 0.0001 (9) −0.0050 (10) −0.0016 (8)
N1 0.0223 (13) 0.0119 (11) 0.0227 (12) 0.0029 (10) −0.0052 (11) −0.0031 (10)
N2 0.0275 (13) 0.0124 (11) 0.0196 (12) 0.0038 (10) −0.0040 (11) −0.0005 (10)
N3 0.0197 (12) 0.0143 (12) 0.0200 (12) −0.0002 (10) −0.0003 (10) −0.0008 (8)
N4 0.0201 (12) 0.0165 (12) 0.0222 (12) 0.0026 (10) −0.0004 (11) 0.0012 (10)
N5 0.0230 (13) 0.0174 (12) 0.0235 (12) 0.0022 (11) 0.0003 (12) −0.0003 (10)
C1 0.0150 (13) 0.0194 (15) 0.0192 (14) 0.0002 (11) 0.0023 (12) 0.0009 (11)
C2 0.0225 (15) 0.0148 (13) 0.0268 (15) −0.0033 (12) 0.0011 (12) 0.0001 (12)
C3 0.0253 (15) 0.0199 (15) 0.0272 (16) −0.0016 (13) −0.0037 (14) −0.0054 (12)
C4 0.0267 (16) 0.0246 (15) 0.0210 (14) 0.0014 (13) −0.0065 (13) 0.0010 (12)
C5 0.0213 (14) 0.0156 (14) 0.0284 (16) 0.0030 (12) 0.0008 (14) 0.0039 (12)
C6 0.0180 (14) 0.0150 (14) 0.0226 (14) −0.0004 (11) 0.0032 (14) −0.0004 (12)
C7 0.0199 (15) 0.0162 (14) 0.0265 (14) 0.0023 (12) −0.0038 (13) −0.0009 (12)
C8 0.0184 (14) 0.0172 (13) 0.0202 (14) −0.0022 (12) 0.0040 (13) 0.0019 (11)
C9 0.0164 (14) 0.0160 (14) 0.0206 (14) −0.0003 (11) 0.0006 (12) 0.0015 (11)
C10 0.0145 (13) 0.0170 (13) 0.0199 (13) 0.0003 (11) 0.0017 (12) 0.0007 (11)
C11 0.0198 (14) 0.0169 (14) 0.0221 (14) 0.0016 (12) 0.0005 (13) 0.0017 (11)
C12 0.0189 (15) 0.0250 (16) 0.0252 (16) −0.0017 (13) 0.0026 (13) −0.0048 (12)
C13 0.0244 (16) 0.0173 (14) 0.0309 (16) 0.0004 (13) 0.0013 (15) −0.0048 (12)
C14 0.0265 (16) 0.0205 (15) 0.0283 (16) 0.0046 (13) −0.0004 (14) 0.0013 (12)
C15 0.0248 (16) 0.0195 (14) 0.0235 (15) −0.0007 (13) −0.0029 (13) −0.0021 (12)
C16 0.0223 (15) 0.0138 (13) 0.0181 (13) 0.0023 (12) −0.0034 (12) 0.0020 (10)
C17 0.0231 (16) 0.0185 (14) 0.0234 (15) 0.0061 (12) 0.0013 (13) 0.0060 (12)
C18 0.0262 (15) 0.0197 (14) 0.0200 (14) 0.0020 (13) −0.0024 (14) −0.0048 (11)
C19 0.0216 (15) 0.0224 (15) 0.0220 (15) 0.0001 (12) −0.0021 (13) 0.0012 (12)
C20 0.0216 (14) 0.0178 (14) 0.0223 (14) 0.0022 (12) 0.0007 (13) −0.0032 (11)

Geometric parameters (Å, º)

O1—C8 1.229 (3) C7—H7B 0.9800
N1—C8 1.361 (3) C7—H7C 0.9800
N1—C1 1.410 (4) C9—C10 1.490 (4)
N1—H1n 0.879 (10) C9—C16 1.508 (4)
N2—N3 1.373 (3) C10—C11 1.398 (4)
N2—C8 1.379 (4) C10—C15 1.400 (4)
N2—H2n 0.885 (10) C11—C12 1.390 (4)
N3—C9 1.289 (3) C11—H11 0.9500
N4—C20 1.355 (3) C12—C13 1.377 (4)
N4—C18 1.377 (4) C12—H12 0.9500
N4—C17 1.465 (3) C13—C14 1.386 (4)
N5—C20 1.319 (4) C13—H13 0.9500
N5—C19 1.378 (4) C14—C15 1.386 (4)
C1—C2 1.396 (4) C14—H14 0.9500
C1—C6 1.406 (4) C15—H15 0.9500
C2—C3 1.381 (4) C16—C17 1.530 (4)
C2—H2 0.9500 C16—H16A 0.9900
C3—C4 1.387 (4) C16—H16B 0.9900
C3—H3 0.9500 C17—H17A 0.9900
C4—C5 1.393 (4) C17—H17B 0.9900
C4—H4 0.9500 C18—C19 1.363 (4)
C5—C6 1.389 (4) C18—H18 0.9500
C5—H5 0.9500 C19—H19 0.9500
C6—C7 1.511 (4) C20—H20 0.9500
C7—H7A 0.9800
C8—N1—C1 128.6 (2) C10—C9—C16 120.0 (2)
C8—N1—H1n 113 (2) C11—C10—C15 117.7 (2)
C1—N1—H1n 118 (2) C11—C10—C9 121.4 (2)
N3—N2—C8 118.7 (2) C15—C10—C9 120.9 (2)
N3—N2—H2n 121.9 (19) C12—C11—C10 121.1 (3)
C8—N2—H2n 118.4 (19) C12—C11—H11 119.5
C9—N3—N2 120.0 (2) C10—C11—H11 119.5
C20—N4—C18 106.6 (2) C13—C12—C11 120.2 (3)
C20—N4—C17 127.1 (2) C13—C12—H12 119.9
C18—N4—C17 126.3 (2) C11—C12—H12 119.9
C20—N5—C19 105.2 (2) C12—C13—C14 119.8 (3)
C2—C1—C6 120.3 (3) C12—C13—H13 120.1
C2—C1—N1 122.7 (3) C14—C13—H13 120.1
C6—C1—N1 117.0 (2) C13—C14—C15 120.1 (3)
C3—C2—C1 120.1 (3) C13—C14—H14 119.9
C3—C2—H2 120.0 C15—C14—H14 119.9
C1—C2—H2 120.0 C14—C15—C10 121.1 (3)
C2—C3—C4 120.4 (3) C14—C15—H15 119.5
C2—C3—H3 119.8 C10—C15—H15 119.5
C4—C3—H3 119.8 C9—C16—C17 111.6 (2)
C3—C4—C5 119.4 (3) C9—C16—H16A 109.3
C3—C4—H4 120.3 C17—C16—H16A 109.3
C5—C4—H4 120.3 C9—C16—H16B 109.3
C6—C5—C4 121.4 (3) C17—C16—H16B 109.3
C6—C5—H5 119.3 H16A—C16—H16B 108.0
C4—C5—H5 119.3 N4—C17—C16 111.2 (2)
C5—C6—C1 118.3 (3) N4—C17—H17A 109.4
C5—C6—C7 120.0 (2) C16—C17—H17A 109.4
C1—C6—C7 121.7 (3) N4—C17—H17B 109.4
C6—C7—H7A 109.5 C16—C17—H17B 109.4
C6—C7—H7B 109.5 H17A—C17—H17B 108.0
H7A—C7—H7B 109.5 C19—C18—N4 106.1 (3)
C6—C7—H7C 109.5 C19—C18—H18 126.9
H7A—C7—H7C 109.5 N4—C18—H18 126.9
H7B—C7—H7C 109.5 C18—C19—N5 110.0 (3)
O1—C8—N1 125.8 (3) C18—C19—H19 125.0
O1—C8—N2 119.8 (2) N5—C19—H19 125.0
N1—C8—N2 114.4 (2) N5—C20—N4 112.0 (3)
N3—C9—C10 115.7 (2) N5—C20—H20 124.0
N3—C9—C16 124.3 (2) N4—C20—H20 124.0
C8—N2—N3—C9 −171.6 (2) N3—C9—C10—C15 1.1 (4)
C8—N1—C1—C2 −1.6 (5) C16—C9—C10—C15 −177.1 (3)
C8—N1—C1—C6 177.8 (3) C15—C10—C11—C12 1.6 (4)
C6—C1—C2—C3 −1.9 (4) C9—C10—C11—C12 −178.4 (3)
N1—C1—C2—C3 177.5 (3) C10—C11—C12—C13 −0.6 (4)
C1—C2—C3—C4 1.0 (5) C11—C12—C13—C14 −0.3 (4)
C2—C3—C4—C5 −0.1 (5) C12—C13—C14—C15 0.3 (4)
C3—C4—C5—C6 0.1 (5) C13—C14—C15—C10 0.7 (4)
C4—C5—C6—C1 −1.0 (4) C11—C10—C15—C14 −1.6 (4)
C4—C5—C6—C7 −179.8 (3) C9—C10—C15—C14 178.4 (3)
C2—C1—C6—C5 1.9 (4) N3—C9—C16—C17 −90.0 (3)
N1—C1—C6—C5 −177.6 (3) C10—C9—C16—C17 88.0 (3)
C2—C1—C6—C7 −179.3 (3) C20—N4—C17—C16 −101.8 (3)
N1—C1—C6—C7 1.2 (4) C18—N4—C17—C16 76.1 (3)
C1—N1—C8—O1 3.3 (5) C9—C16—C17—N4 −173.0 (2)
C1—N1—C8—N2 −175.7 (3) C20—N4—C18—C19 0.1 (3)
N3—N2—C8—O1 −178.3 (2) C17—N4—C18—C19 −178.1 (3)
N3—N2—C8—N1 0.8 (4) N4—C18—C19—N5 0.3 (3)
N2—N3—C9—C10 −178.0 (2) C20—N5—C19—C18 −0.7 (3)
N2—N3—C9—C16 0.0 (4) C19—N5—C20—N4 0.8 (3)
N3—C9—C10—C11 −179.0 (3) C18—N4—C20—N5 −0.6 (3)
C16—C9—C10—C11 2.9 (4) C17—N4—C20—N5 177.7 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C10–C15 and N4,N5,C18–C20 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1n···N3 0.88 (1) 2.12 (3) 2.601 (3) 114 (2)
N2—H2n···N5i 0.89 (1) 2.03 (1) 2.884 (3) 161 (3)
C5—H5···O1ii 0.95 2.49 3.416 (3) 164
C7—H7B···Cg1iii 0.98 2.82 3.686 (3) 148
C12—H12···Cg1iv 0.95 2.72 3.464 (3) 135
C20—H20···Cg2i 0.95 2.85 3.604 (3) 137

Symmetry codes: (i) −x, −y+2, z+1/2; (ii) −x+1/2, y−1/2, z+1/2; (iii) x, y, z+1; (iv) −x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2069).

References

  1. Aboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Maklad, Y. A., Amin, K. M., Abdel-Rehim, M. & El-Behairy, M. F. (2012). Eur. J. Med. Chem. 47, 360–369. [DOI] [PubMed]
  2. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  3. Attia, M. I., Aboul-Enein, M. N., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1799–o1800. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Dimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Duffy, M. S., Reid, R. S., Quail, J. W., Pugazhenthi, U., Ong, A., Bikker, J. A. & Weaver, D. F. (1993). J. Med. Chem. 36, 2243–2252. [DOI] [PubMed]
  6. Dimmock, J. R., Sidhu, K. K., Tumber, S. D., Basran, S. K., Chen, M., Quail, J. W., Yang, J., Rozas, I. & Weaver, D. F. (1995). J. Med. Chem. 30, 287–301.
  7. Edafiogho, I. O. & Scott, K. R. (1996). Burgers Medicinal Chemistry and Drug Discovery, editied by M. E. Wolf, p. 175. New York: John Wiley & Sons.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Sander, J. W. & Shorvon, S. D. (1987). J. Neurol. Neurosurg. Psychiatry, 50, 829–839. [DOI] [PMC free article] [PubMed]
  10. Saxena, A. K. & Saxena, M. (1995). Prog. Drug Res. 44, 185–291. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022659/mw2069sup1.cif

e-68-o1848-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022659/mw2069Isup2.hkl

e-68-o1848-Isup2.hkl (108.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022659/mw2069Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES