Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1850–o1851. doi: 10.1107/S1600536812022660

4-[(E)-2-(2-Chloro­benzyl­idene)hydrazin-1-yl]quinolin-1-ium chloride dihydrate

Edward R T Tiekink a,*, Solange M S V Wardell b, James L Wardell c,, Marcelle de Lima Ferreira d, Marcus V N de Souza d, Carlos R Kaiser e
PMCID: PMC3379418  PMID: 22719616

Abstract

In the title hydrated salt, C16H13ClN3 +·Cl·2H2O, a small twist is evident in the cation so that the chloro­benzene ring is not coplanar with the central hydrazinyl group [the N—C—C—C torsion angle = −4.8 (12)°]. The conformation about the imine N=C bond [1.284 (10) Å] is E. The components of the structure are connected into a three-dimensional architecture via O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds. One water H atom is disposed over two sites of equal occupancy.

Related literature  

For the biological activity, including the anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009); Candea et al. (2009); Montenegro et al. (2011, 2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010, 2012); Ferreira et al. (2012); Wardell et al. (2012).graphic file with name e-68-o1850-scheme1.jpg

Experimental  

Crystal data  

  • C16H13ClN3 +·Cl·2H2O

  • M r = 354.23

  • Monoclinic, Inline graphic

  • a = 4.5946 (3) Å

  • b = 20.1550 (19) Å

  • c = 18.2192 (17) Å

  • β = 96.660 (5)°

  • V = 1675.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 120 K

  • 0.33 × 0.02 × 0.01 mm

Data collection  

  • Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.786, T max = 1.000

  • 14027 measured reflections

  • 2924 independent reflections

  • 1565 reflections with I > 2σ(I)

  • R int = 0.146

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.096

  • wR(F 2) = 0.223

  • S = 1.06

  • 2924 reflections

  • 229 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022660/kj2202sup1.cif

e-68-o1850-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022660/kj2202Isup2.hkl

e-68-o1850-Isup2.hkl (140.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022660/kj2202Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯Cl2 0.88 (5) 2.32 (5) 3.192 (7) 173 (6)
O1w—H1w⋯Cl2 0.84 (6) 2.37 (6) 3.207 (7) 177 (11)
N2—H2n⋯Cl2i 0.88 (6) 2.49 (6) 3.349 (7) 166 (7)
O1w—H2w⋯Cl2ii 0.84 (5) 2.42 (7) 3.192 (7) 154 (8)
O2w—H3w⋯O1wiii 0.84 (7) 1.96 (7) 2.801 (9) 174 (10)
O2w—H4w⋯O2wiv 0.84 (8) 2.08 (10) 2.804 (10) 144 (11)
O2w—H5w⋯O2wiii 0.83 (12) 2.05 (13) 2.804 (10) 151 (10)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

supplementary crystallographic information

Comment

A wide range of pharmacological activities have been noted for compounds containing the quinoline nucleus (de Souza et al., 2009), including anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities. Recently, we have focused attention on arylaldehyde 7-chloroquinoline-4-hydrazone derivatives (Candea et al., 2009; Montenegro et al., 2011). Complementing synthetic studies are crystallographic investigations of these hydrazones (Howie et al., 2010; de Souza et al., 2010; Ferreira et al., 2012; de Souza et al., 2012). We have recently turned our attention to arylaldehyde quinoline-4-hydrazone derivatives (Wardell et al., 2012) and now wish to report the crystal structure of the title hydrated salt, (I).

The asymmetric unit of (I), Fig. 1, comprises a 4-[(E)-2-[(2-Chlorophenyl)methylidene]hydrazin-1-yl]quinolin-1-ium cation, a chloride anion and two lattice water molecules. The quinolinyl residue is co-planar with the central hydrazinyl group [the N3—N2—C3—C2 torsional angle is -1.3 (11)°], but the chlorobenzene ring is slightly twisted out of this plane [N3—C10—C11—C16 = -4.8 (12)°]. The conformation about the N3═C10 bond [1.284 (10) Å] is E. The molecular structure of (I) resembles very closely that of the 2,4-dichloro analogue (Wardell et al., 2012).

The crystal packing in (I) is dominated by hydrogen bonding interactions, Table 1. The water molecules aggregate into chains along the a axis, Fig. 2. One of the O2w—H atoms forms a hydrogen bond to the O1w—O atom. The remaining H atom on O2w is disordered over two positions of equal weight. These interact with adjacent O2w-water molecules as shown in Fig. 2. The two H atoms of O1w form hydrogen bonds with translationally related Cl anions, Fig. 2. Finally, each Cl anion is connected in turn to two quinolinium-H atoms to connect the components of (I) into a three-dimensional architecture, Fig. 3.

Experimental

A solution of 4-hydrazinoquinoline hydrochloride 1 (1.03 mmol) and 2-chlorobenzaldehyde 2 (1.24 mmol) in ethanol (5 ml) was stirred for 8 h at room temperature and then rotary evaporated. The solid residue was washed with cold Et2O (3 \x 10 ml), and recrystallized from EtOH to give the title salt as a dihydrate; M.pt 554–555 K. 1H NMR (400 MHz, DMSO-d6) δ: 14.38 (ls, 1H, NH), 13.07 (ls, 1H, NH), 9.29 (s, 1H, H3'), 8.87 (d, J = 8.4 Hz, 1H, H5), 8.72 (d, J = 6.8 Hz, 1H, H2), (t, J = 7.7 Hz, 1H, H7'), 8.11 (d, J = 8.4 Hz, 1H, H8), 8.04 (t, J = 8.4 Hz, 1H, H7), 7.83 (t, J = 8.4 Hz, 1H, H6), 7.71 (d, J = 6.8 Hz, 1H, H3), 7.60 (d, J = 7.3 Hz, 1H, H8'), 7.57 – 7.47 (m, 2H, H6' and H9').

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound and O-bound H-atoms were located in a difference Fourier map and refined with a O—H = 0.84±0.01 Å [Uiso(H) = 1.5Ueq(O)] and N—H = 0.88±0.01 Å [Uiso(H) = 1.2Ueq(N)]. One of the O2w—H H atoms was found to be disordered over two sites of equal occupancy with each involved in a significant hydrogen bonding interaction. While the structure has been determined unambiguously, the authors acknowledge that the structure determined is not optimal as seen, for example, in the poor precision in the C—C bonds.

Figures

Fig. 1.

Fig. 1.

The molecular structure showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only one position of the disordered H atoms of the O2w water molecule is shown.

Fig. 2.

Fig. 2.

Detail of the hydrogen bonding along the a axis in (I). The O—H···O, O—H···Cl and N—H···Cl hydrogen bonds are shown as orange, green and blue dashed lines, respectively. Only the chloride anions, water molecules and N-bound H atoms are illustrated. The water molecule was disordered with sites of equal weight being resolved for one water-H atom (see text).

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents of (I). The O—H···O, O—H···Cl and N—H···Cl hydrogen bonds are shown as orange, green and blue dashed lines, respectively.

Crystal data

C16H13ClN3+·Cl·2H2O F(000) = 736
Mr = 354.23 Dx = 1.404 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 20901 reflections
a = 4.5946 (3) Å θ = 2.9–27.5°
b = 20.1550 (19) Å µ = 0.40 mm1
c = 18.2192 (17) Å T = 120 K
β = 96.660 (5)° Needle, colourless
V = 1675.8 (2) Å3 0.33 × 0.02 × 0.01 mm
Z = 4

Data collection

Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer 2924 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode 1565 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.146
Detector resolution: 9.091 pixels mm-1 θmax = 25.0°, θmin = 3.2°
φ and ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −23→23
Tmin = 0.786, Tmax = 1.000 l = −21→21
14027 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.P)2 + 18.2957P] where P = (Fo2 + 2Fc2)/3
2924 reflections (Δ/σ)max < 0.001
229 parameters Δρmax = 0.46 e Å3
11 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.2444 (5) 0.37879 (12) 0.03537 (12) 0.0356 (6)
N1 1.3893 (15) 0.3016 (3) 0.4691 (4) 0.0277 (17)
H1N 1.492 (15) 0.299 (4) 0.513 (2) 0.033*
N2 0.8798 (14) 0.3126 (3) 0.2682 (4) 0.0242 (15)
H2N 0.891 (17) 0.283 (3) 0.233 (3) 0.029*
N3 0.6721 (14) 0.3622 (3) 0.2585 (4) 0.0268 (16)
C1 1.1941 (17) 0.3493 (4) 0.4555 (4) 0.0269 (19)
H1 1.1704 0.3806 0.4934 0.032*
C2 1.0242 (17) 0.3555 (4) 0.3889 (4) 0.0248 (19)
H2 0.8891 0.3912 0.3809 0.030*
C3 1.0490 (16) 0.3096 (4) 0.3328 (4) 0.0202 (17)
C4 1.2699 (17) 0.2574 (4) 0.3463 (4) 0.0230 (18)
C5 1.3246 (16) 0.2098 (4) 0.2931 (4) 0.0226 (18)
H5 1.2159 0.2107 0.2455 0.027*
C6 1.5348 (18) 0.1623 (4) 0.3100 (4) 0.0278 (19)
H6 1.5708 0.1303 0.2739 0.033*
C7 1.6980 (17) 0.1602 (4) 0.3803 (4) 0.0265 (19)
H7 1.8415 0.1266 0.3914 0.032*
C8 1.6507 (17) 0.2062 (4) 0.4325 (4) 0.0252 (19)
H8 1.7631 0.2054 0.4796 0.030*
C9 1.4343 (17) 0.2546 (4) 0.4157 (4) 0.0247 (19)
C10 0.5259 (16) 0.3655 (4) 0.1942 (5) 0.0259 (19)
H10 0.5643 0.3353 0.1565 0.031*
C11 0.3006 (18) 0.4161 (4) 0.1795 (4) 0.0263 (19)
C12 0.1484 (17) 0.4252 (4) 0.1102 (4) 0.0257 (19)
C13 −0.0717 (18) 0.4732 (4) 0.0953 (5) 0.034 (2)
H13 −0.1737 0.4784 0.0472 0.041*
C14 −0.1342 (18) 0.5130 (4) 0.1541 (5) 0.033 (2)
H14 −0.2819 0.5460 0.1458 0.040*
C15 0.0101 (19) 0.5057 (4) 0.2227 (5) 0.036 (2)
H15 −0.0375 0.5336 0.2616 0.043*
C16 0.2242 (18) 0.4586 (4) 0.2365 (5) 0.030 (2)
H16 0.3232 0.4543 0.2850 0.036*
Cl2 1.8077 (5) 0.28801 (11) 0.62092 (11) 0.0351 (6)
O1W 1.3131 (14) 0.3975 (3) 0.6374 (4) 0.0408 (16)
H1W 1.446 (13) 0.369 (3) 0.635 (6) 0.061*
H2W 1.150 (9) 0.379 (4) 0.640 (6) 0.061*
O2W 0.7300 (15) 0.4920 (3) 0.4565 (4) 0.0455 (17)
H3W 0.72 (2) 0.527 (3) 0.431 (5) 0.068*
H4W 0.563 (12) 0.484 (7) 0.469 (8) 0.068* 0.50
H5W 0.85 (3) 0.495 (7) 0.494 (5) 0.068* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0366 (12) 0.0402 (13) 0.0283 (11) 0.0061 (11) −0.0034 (9) −0.0028 (10)
N1 0.031 (4) 0.028 (4) 0.022 (4) 0.004 (3) −0.007 (3) 0.003 (3)
N2 0.026 (4) 0.024 (4) 0.022 (4) −0.002 (3) −0.001 (3) −0.002 (3)
N3 0.024 (4) 0.027 (4) 0.027 (4) 0.000 (3) −0.005 (3) 0.005 (3)
C1 0.030 (5) 0.035 (5) 0.015 (4) 0.001 (4) −0.002 (4) 0.002 (4)
C2 0.027 (4) 0.018 (4) 0.030 (5) 0.002 (4) 0.005 (4) −0.002 (4)
C3 0.020 (4) 0.020 (4) 0.020 (4) −0.003 (3) 0.001 (3) 0.002 (3)
C4 0.028 (4) 0.023 (5) 0.016 (4) 0.000 (4) −0.004 (3) 0.008 (3)
C5 0.021 (4) 0.028 (5) 0.019 (4) 0.000 (4) 0.002 (3) 0.001 (4)
C6 0.031 (5) 0.022 (5) 0.030 (5) 0.002 (4) 0.003 (4) 0.000 (4)
C7 0.024 (4) 0.029 (5) 0.025 (4) 0.004 (4) −0.002 (3) 0.010 (4)
C8 0.027 (4) 0.035 (5) 0.013 (4) −0.007 (4) −0.003 (3) 0.001 (4)
C9 0.027 (4) 0.029 (5) 0.017 (4) 0.000 (4) −0.002 (3) 0.004 (4)
C10 0.023 (4) 0.021 (5) 0.032 (5) −0.005 (4) −0.002 (4) 0.001 (4)
C11 0.031 (5) 0.022 (5) 0.025 (4) −0.006 (4) 0.002 (4) 0.002 (4)
C12 0.026 (4) 0.023 (5) 0.028 (5) −0.003 (4) 0.003 (4) 0.001 (4)
C13 0.026 (5) 0.030 (5) 0.045 (6) −0.003 (4) −0.004 (4) 0.013 (4)
C14 0.024 (4) 0.024 (5) 0.052 (6) 0.006 (4) 0.006 (4) 0.008 (4)
C15 0.038 (5) 0.029 (5) 0.042 (6) 0.002 (4) 0.010 (5) 0.001 (4)
C16 0.024 (4) 0.034 (5) 0.032 (5) 0.000 (4) 0.002 (4) 0.002 (4)
Cl2 0.0372 (12) 0.0408 (13) 0.0258 (11) −0.0028 (11) −0.0026 (9) 0.0033 (10)
O1W 0.043 (4) 0.046 (4) 0.034 (4) 0.001 (3) 0.009 (3) 0.006 (3)
O2W 0.057 (4) 0.033 (4) 0.049 (4) 0.009 (4) 0.018 (4) 0.007 (3)

Geometric parameters (Å, º)

Cl1—C12 1.752 (8) C7—H7 0.9500
N1—C1 1.319 (10) C8—C9 1.401 (11)
N1—C9 1.390 (10) C8—H8 0.9500
N1—H1N 0.882 (10) C10—C11 1.456 (11)
N2—C3 1.335 (9) C10—H10 0.9500
N2—N3 1.380 (9) C11—C12 1.382 (11)
N2—H2N 0.880 (10) C11—C16 1.421 (12)
N3—C10 1.284 (10) C12—C13 1.404 (11)
C1—C2 1.371 (10) C13—C14 1.393 (12)
C1—H1 0.9500 C13—H13 0.9500
C2—C3 1.392 (10) C14—C15 1.353 (12)
C2—H2 0.9500 C14—H14 0.9500
C3—C4 1.463 (11) C15—C16 1.369 (12)
C4—C9 1.398 (10) C15—H15 0.9500
C4—C5 1.406 (11) C16—H16 0.9500
C5—C6 1.370 (11) O1W—H1W 0.842 (10)
C5—H5 0.9500 O1W—H2W 0.840 (10)
C6—C7 1.407 (11) O2W—H3W 0.841 (10)
C6—H6 0.9500 O2W—H4W 0.841 (11)
C7—C8 1.363 (11) O2W—H5W 0.840 (10)
C1—N1—C9 121.3 (7) C9—C8—H8 120.4
C1—N1—H1N 120 (6) N1—C9—C4 119.8 (7)
C9—N1—H1N 119 (6) N1—C9—C8 118.8 (7)
C3—N2—N3 117.9 (6) C4—C9—C8 121.4 (7)
C3—N2—H2N 123 (5) N3—C10—C11 119.3 (8)
N3—N2—H2N 119 (5) N3—C10—H10 120.4
C10—N3—N2 115.8 (7) C11—C10—H10 120.4
N1—C1—C2 122.5 (8) C12—C11—C16 116.5 (8)
N1—C1—H1 118.7 C12—C11—C10 122.2 (8)
C2—C1—H1 118.7 C16—C11—C10 121.3 (7)
C1—C2—C3 120.2 (8) C11—C12—C13 123.0 (8)
C1—C2—H2 119.9 C11—C12—Cl1 119.6 (6)
C3—C2—H2 119.9 C13—C12—Cl1 117.3 (6)
N2—C3—C2 121.9 (7) C14—C13—C12 117.1 (8)
N2—C3—C4 120.1 (7) C14—C13—H13 121.4
C2—C3—C4 118.0 (7) C12—C13—H13 121.4
C9—C4—C5 118.3 (7) C15—C14—C13 121.6 (8)
C9—C4—C3 118.2 (7) C15—C14—H14 119.2
C5—C4—C3 123.4 (7) C13—C14—H14 119.2
C6—C5—C4 120.0 (7) C14—C15—C16 120.7 (9)
C6—C5—H5 120.0 C14—C15—H15 119.7
C4—C5—H5 120.0 C16—C15—H15 119.7
C5—C6—C7 120.9 (8) C15—C16—C11 121.1 (8)
C5—C6—H6 119.6 C15—C16—H16 119.5
C7—C6—H6 119.6 C11—C16—H16 119.5
C8—C7—C6 120.2 (8) H1W—O1W—H2W 111 (6)
C8—C7—H7 119.9 H3W—O2W—H4W 108 (6)
C6—C7—H7 119.9 H3W—O2W—H5W 112 (6)
C7—C8—C9 119.2 (7) H4W—O2W—H5W 110 (6)
C7—C8—H8 120.4
C3—N2—N3—C10 176.2 (7) C3—C4—C9—N1 −1.4 (11)
C9—N1—C1—C2 0.3 (13) C5—C4—C9—C8 0.6 (12)
N1—C1—C2—C3 1.4 (13) C3—C4—C9—C8 −179.7 (7)
N3—N2—C3—C2 −1.3 (11) C7—C8—C9—N1 −179.5 (7)
N3—N2—C3—C4 179.2 (7) C7—C8—C9—C4 −1.2 (12)
C1—C2—C3—N2 177.5 (7) N2—N3—C10—C11 179.5 (7)
C1—C2—C3—C4 −3.0 (11) N3—C10—C11—C12 175.7 (8)
N2—C3—C4—C9 −177.5 (7) N3—C10—C11—C16 −4.8 (12)
C2—C3—C4—C9 2.9 (11) C16—C11—C12—C13 −0.2 (12)
N2—C3—C4—C5 2.2 (12) C10—C11—C12—C13 179.3 (8)
C2—C3—C4—C5 −177.3 (7) C16—C11—C12—Cl1 175.8 (6)
C9—C4—C5—C6 0.0 (12) C10—C11—C12—Cl1 −4.7 (11)
C3—C4—C5—C6 −179.7 (7) C11—C12—C13—C14 0.2 (12)
C4—C5—C6—C7 0.0 (12) Cl1—C12—C13—C14 −175.9 (6)
C5—C6—C7—C8 −0.7 (13) C12—C13—C14—C15 −0.1 (13)
C6—C7—C8—C9 1.2 (12) C13—C14—C15—C16 0.0 (14)
C1—N1—C9—C4 −0.2 (12) C14—C15—C16—C11 0.0 (13)
C1—N1—C9—C8 178.1 (8) C12—C11—C16—C15 0.1 (12)
C5—C4—C9—N1 178.9 (7) C10—C11—C16—C15 −179.3 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1n···Cl2 0.88 (5) 2.32 (5) 3.192 (7) 173 (6)
O1w—H1w···Cl2 0.84 (6) 2.37 (6) 3.207 (7) 177 (11)
N2—H2n···Cl2i 0.88 (6) 2.49 (6) 3.349 (7) 166 (7)
O1w—H2w···Cl2ii 0.84 (5) 2.42 (7) 3.192 (7) 154 (8)
O2w—H3w···O1wiii 0.84 (7) 1.96 (7) 2.801 (9) 174 (10)
O2w—H4w···O2wiv 0.84 (8) 2.08 (10) 2.804 (10) 144 (11)
O2w—H5w···O2wiii 0.83 (12) 2.05 (13) 2.804 (10) 151 (10)

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x−1, y, z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2202).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Candea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272–6274. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Ferreira, M. de L., Souza, M. V. N. de, Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1214–o1215. [DOI] [PMC free article] [PubMed]
  5. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Howie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440–447.
  7. Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. do O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc, 9, 251–256.
  8. Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. Do O., Rodriques, F. A. R., Bispo, M. L. F., Cardoso, L. N. F., Kaiser, C. R. & de Souza, M. V. N. (2011). Med. Chem. 7, 599–604. [DOI] [PubMed]
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Souza, M. V. N. de, Ferreira, M. de L., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1244–o1245. [DOI] [PMC free article] [PubMed]
  13. Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699. [DOI] [PMC free article] [PubMed]
  14. Souza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474–1480. [DOI] [PubMed]
  15. Wardell, S. M. S. V., Tiekink, E. R. T., Wardell, J. L., Ferreira, M. de L. & Souza, M. V. N. de (2012). Acta Cryst. E68, o1232–o1233. [DOI] [PMC free article] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022660/kj2202sup1.cif

e-68-o1850-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022660/kj2202Isup2.hkl

e-68-o1850-Isup2.hkl (140.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022660/kj2202Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES